О неслышимых звуках - страница 12
Для целей гидролокации пользуются ультразвуком с частотой в среднем от 15 до 30 тысяч колебаний в секунду.
Продолжительность каждого отдельного сигнала приблизительно 0,1 секунды.
Момент посылки сигнала отмечается на экране особого аппарата, называемого осциллографом (рис. 17), появлением пилообразного изгиба светящегося лучика.
Сигнал послан. Специальное реле (рис. 18) подключает излучатель к приемному устройству, и гидролокатор в течение некоторого времени ждет прихода отраженного сигнала.
Если эхо-сигнал приходит, то особый прибор сначала усиливает его, затем превращает неслышимые ультразвуковые сигналы в обычные звуки, которые прослушиваются с помощью репродуктора.
Одновременно принятые сигналы подаются также на осциллограф, на экране которого появляется второй пилообразный изгиб луча.
Чем больше промежуток времени между посылкой и приемом сигнала, тем дальше будут отстоять друг от друга изгибы луча на экране осциллографа. Поместив на экране прозрачную линейку с нанесенным на нее масштабом, можно, взглянув на прибор, сразу узнать расстояние до препятствия, отразившего сигнал.
Излучатель обычно помещается в специальный кожух и устанавливается под днищем корабля. Вращаясь, излучатель как бы «осматривает горизонт» (рис. 19).
Наблюдение за отраженным сигналом с помощью осциллографа позволяет определить, на каком расстоянии от излучателя находится предмет, обнаруженный гидролокатором.
Однако когда корабль движется и расстояние между наблюдателем и обнаруженным препятствием непрерывно изменяется, по виду возникающего на экране эхо-сигнала бывает невозможно определить, что же именно является причиной его появления. Это может быть или подводная лодка, или морская скала, а в некоторых случаях и большая рыба.
Ответить на этот важный вопрос часто помогает прослушивание отраженного сигнала, превращенного в слышимый звук.
Опытный наблюдатель по звуку отраженного сигнала может сделать много ценных заключений. Так, например, он может определить, движется ли отразившее сигнал препятствие, или оно неподвижно, а если движется, то приближается или удаляется. Узнать это помогают наблюдателю изменения тона звука.
Все вы, наверное, замечали, что тон паровозного свистка кажется выше, когда паровоз приближается к нам, и ниже, когда паровоз удаляется.
Объясняется это очень просто. Предположим, что в тот момент, когда машинист включил свисток, паровоз отделяют от наблюдателя 332 метра. Как мы уже знаем, звук свистка представляет собою чередующиеся сжатия и разрежения воздуха. Именно они, попадая в ухо, и вызывают ощущение звука.
Тон звука определяется числом сжатий или разрежений воздуха за одну секунду.
Пусть свисток создает двести сжатий в секунду. Если паровоз и наблюдатель неподвижны, то сжатия следуют одно за другим через каждую двухсотую часть секунды и вызывают у человека ощущение звука определенного тона.
Если же паровоз приближается к наблюдателю, положение изменяется. Первому сжатию, чтобы дойти до наблюдателя, потребуется одна секунда, а следующему — уже меньший промежуток времени, поскольку за истекшее время паровоз приблизится к наблюдателю. Это будет справедливо и для последующих сжатий, благодаря чему за секунду к наблюдателю придет более двухсот сжатий, то есть частота колебаний увеличится и тон звука повысится.
Если паровоз будет удаляться, то второму сжатию придется пройти больший путь, чем первому, и промежуток времени, разделяющий их, увеличится. За одну секунду в ухо наблюдателя поступит меньше 200 сжатий — тон звука понизится.
Чем быстрее движется паровоз, тем заметнее изменение тона, происходящее в тот момент, когда приближающийся источник звука проходит мимо нас и начинает удаляться.
Именно такое изменение тона эхо-сигнала позволяет гидроакустику определить характер движения предмета, отразившего посланный сигнал. Следя за тем, как сначала нарастает, а потом замирает отраженный сигнал, опытный наблюдатель может составить себе представление о характере обнаруженного в море препятствия.