О неслышимых звуках - страница 41
Для обнаружения и распознавания злокачественных опухолей более эффективным оказалось применение прибора, очень похожего на отражательный дефектоскоп. На пути к решению этой задачи встретилось очень много затруднений. Сложное строение тканей человеческого организма приводило к тому, что при прозвучивании возникало множество эхо-сигналов, разобраться в природе которых было исключительно трудно.
Однако затруднения не остановили исследователей, и в конце концов, как сообщают зарубежные журналы, настойчивость ученых была вознаграждена. В результате многочисленных опытов было установлено, что можно отличить эхо-сигналы, приходящие от нормальной ткани, от эхо-сигналов, приходящих от ткани, пораженной опухолью. Более того, при обнаружении опухоли характер эхо-сигналов позволил устанавливать и ее природу. Если эхо-сигналы были менее плотными, чем от нормальной ткани, это указывало на то, что обнаружена доброкачественная опухоль. Раковая опухоль, наоборот, обнаруживалась как область более плотных сигналов на ослабленном фоне.
Преимущества нового метода сделались особенно ясными, когда ультразвуковому исследованию был подвергнут больной, у которого лечащие врачи не могли обнаружить опухоль, но подозревали, что она существует, поскольку в ткани наблюдался воспалительный процесс. С помощью ультразвука удалось обнаружить совсем небольшую, но, судя по характеру ультразвуковых сигналов, несомненно злокачественную опухоль. Последующая операция подтвердила правильность диагноза. У больного была удалена раковая опухоль размером всего в 7 миллиметров! Ничтожные размеры опухоли не давали возможности обнаружить ее обычными способами.
Злокачественная опухоль может возникнуть в самых различных органах, однако, как показывают наблюдения, она чаще возникает в определенных частях организма, которые и необходимо подвергать контролю в первую очередь. Распространенной формой злокачественной опухоли является рак груди, и естественно, что один из первых аппаратов для ультразвуковой диагностики рака был предназначен для обнаружения именно этой формы заболевания. Этот аппарат снабжен миниатюрным излучателем ультразвуковых импульсов с частотой 15 миллионов колебаний в секунду, посылаемых один за другим через очень короткие промежутки времени, исчисляемые тысячными долями секунды. Возникающие ультразвуковые эхо-сигналы превращаются в световые и наблюдаются на экране электронно-лучевой трубки. Очень сложное радиотехническое устройство заставляет лучик в электроннолучевой трубке перемещаться таким образом, что на экране возникает изображение, которое соответствует тому, что можно было бы увидеть, если разрезать исследуемую ткань по направлению ультразвуковых сигналов. При этом на изображении, возникающем на экране, более интенсивным эхо-сигналам соответствуют более светлые участки, а менее интенсивным — темные. Мы видим, что описанное ультразвуковое изображение отличается от рентгеновского, при котором то, что наблюдается на экране, соответствует плоскости, перпендикулярной рентгеновскому лучу, в то время как ультразвуковое изображение — плоскости, совпадающей с лучом.
Излучатель импульсов непрерывно движется взад и вперед в наполненной дистиллированной водой камере, затянутой тончайшей резиной. Камера располагается на исследуемом участке поверхности человеческого организма, и ультразвуковые импульсы исследуют прилегающую к поверхности часть ткани так же, как можно исследовать глубину пруда, опуская в воду гирю, привязанную к бечевке. В обоих случаях исследование ведут, перемещаясь от одной точки к другой, всякий раз замечая результат измерений. При этом при измерении глубины веревка, а в описываемом приборе ультразвуковой импульс всегда перпендикулярны к поверхности, сквозь которую они направляются на разведку. Вода, наполняющая камеру, — прекрасный проводник ультразвуковых сигналов, а тонкая резиновая перепонка хорошо прилегает к человеческой ткани, облегчая прохождение сигнала.
Вполне понятно, что аппарат, выполняющий такие сложные операции, не может быть простым. Помимо механических приспособлений, обеспечивающих непрерывное движение излучателя, прибор имеет очень сложную электронную часть, содержащую несколько десятков радиоламп. Глубина, на которую можно проникнуть в человеческий организм с помощью описанного прибора, ограничена следующими обстоятельствами. Первое и наиболее интенсивное эхо возникает на границе воды, наполняющей камеру с резиновой перепонкой, являющейся ее дном. Достигнув излучателя, этот эхо-сигнал вновь отражается, после чего движется в том же направлении, что и сигналы, посылаемые излучателем, ничем от них не отличаясь. Отразившись второй раз от резиновой перепонки, сигнал дает начало второму эху, которое будет маскировать слабые эхо-сигналы, приходящие от тканей, расположенных в глубине человеческого организма. Это маскирующее действие повторного эха и ограничивает глубину получаемого изображения. Описанным способом можно исследовать ткань приблизительно на глубину трех с половиной сантиметров, что во многих случаях вполне достаточно. Сочетая возвратно-поступательное движение излучателя с медленным перемещением его в поперечном направлении, врач может тщательно обследовать подозрительный в отношении возникновения опухоли участок ткани. Таким именно способом была обнаружена та небольшая раковая опухоль, о которой говорилось выше. На рис. 55 воспроизведено изображение, полученное в этом случае на экране аппарата при исследовании воспаленного участка ткани. Раковая опухоль видна в виде светлой области на таком расстоянии от излучателя, на котором нормальная ткань вызывает менее плотные эхо-сигналы. Конечно, в значении подобных ультразвукограмм может разобраться только специалист, так же как и в значении рентгеноскопического изображения пораженного туберкулезом легкого.