Объективное знание. Эволюционный подход - страница 25
тот факт (или предполагаемый факт), о котором говорится в рассматриваемом высказывании (используя какое-то условное или описательное имя этого высказывания). И наоборот: ясно, что если у нас есть такой метаязык, на котором мы можем говорить (а) о фактах, описываемых некоторыми высказываниями некоторого языка (объекта), просто высказывая эти факты, а также (b) о высказываниях этого языка (объекта) (используя имена этих высказываний), то мы можем также говорить на этом метаязыке и о соответствии высказываний фактам.
Коль скоро мы можем таким образом для каждого высказывания языка L>1сформулировать (state) условия, при которых оно соответствует фактам, мы можем дать чисто словесное, но соответствующее здравому смыслу[49] определение: высказывание истинно, если и только если оно соответствует фактам.
Это, как указывает Тарский, есть объективное (objectivist), или абсолютное (absolutist), понятие истины. Однако оно абсолютное не в том смысле, что позволяет нам высказываться с «абсолютной несомненностью или уверенностью» — ведь оно не дает нам критерия истинности. Напротив, Тарский сумел доказать, что, если L>1достаточно богат, (например, если он содержит арифметику), то не может существовать общего критерия истинности. Таким образом, критерий истинности может существовать только в крайне бедных искусственных языках. (Этим Тарский обязан Гёделю).
Итак, идея истины абсолютная, но мы не можем притязать на абсолютную несомненность: мы — искатели истины, но не обладатели ею [50].
7. Содержание, истинностное содержание и ложностное содержание
Чтобы пояснить, что мы делаем, когда ищем истину, мы должны хотя бы в некоторых случаях быть способны указывать основания (reasons) интуитивного притязания на то, что мы подошли ближе к истине, или что некоторая теория Т>1сменилась новой теорией, скажем Т>2, потому что Т>2больше похожа на истину, чем Т>1.
Представление о том, что теория Т>1может быть дальше от истины, чем теория Т>2,так что Т>2является лучшим приближением к истине (или попросту лучшей теорией), чем Т>1, использовалось интуитивно многими философами, в том числе и мной. И точно так же, как понятие истины рассматривалось как подозрительное многими философами (и, как это стало ясно из рассмотрения Тарским семантических парадоксов, не без основания, с тем же подозрением смотрели и на понятия лучшего приближения, или аппроксимации, к истине, близости к истине или (как я это назвал) большей «правдоподобности (verisimilitude)»теорий.
Чтобы снять эти подозрения, я предложил логическое понятие правдоподобности, используя сочетание двух понятий, первоначально введенных Тарским: (а) понятие истины и (b) понятие (логического) содержания высказывания, то есть класса всех высказываний, логически вытекающих изданного (его «класса следствий», как обычно называл его Тарский) [51].
Любое высказывание имеет содержание, или класс следствий, — класс всех тех высказываний, которые из него следуют. (Мы можем, вслед за Тарским, описать класс следствий тавтологических высказываний как нулевой класс, так что тавтологические высказывания имеют нулевое содержание). И каждое содержание содержит подсодержание, состоящее из всех его истинных следствий, и только из них.
Класс всех истинных высказываний, следующих из данного высказывания (или принадлежащих данной дедуктивной системе) и не являющихся тавтологиями, можно назвать его истиностным содержанием (truth content).
Истинностное содержание тавтологий (логически истинных высказываний) равно нулю: оно состоит только из тавтологий. Все остальные высказывания, включая и все ложные высказывания, имеют ненулевое истинностное содержание.
Класс ложных высказываний, вытекающих из данного высказывания, — подкласс его содержания, состоящий в точности из тех высказываний, которые ложны, — можно было бы назвать (как бы из вежливости) его «ложностным содержанием», однако он не имеет характерных свойств «содержания», или класса следствий по Тарскому. Это не дедуктивная система в смысле Тарского, поскольку из любого ложного высказывания можно логически вывести истинные высказывания. (Дизъюнкция ложного и любого истинного высказывания — пример одного из тех высказываний, которые являются истинными и следуют из ложного высказывания).