Один на один с врагом: русская школа рукопашного боя - страница 18

стр.

Например, отдельно взятый цилиндрический стержень, ничем не ограниченный, может совершать разнообразные движения. Но если этот стержень поместить внутрь полого цилиндра (рис. 8), то движение стержня относительно цилиндра станет вполне определенным. Оно будет состоять из двух независимых движений: вращательного (1) и поступательного (2).

Такое соединение двух соприкасающихся тел, допускающее их относительное движение, называется кинематической парой.

Рис. 8


Тела, образующие кинематическую пару, называются звеньями. Звенья кинематической пары могут состоять из одного или нескольких жестко соединенных твердых тел. Поверхности, линии или точки соприкосновения звеньев называются элементами кинематических пар.

Если элементом соприкосновения звеньев является поверхность, кинематическая пара называется низшей.


Таблица 2

Низшие кинематические пары могут быть вращательными и поступательными (таблица 2). Большим преимуществом этих пар является малый износ элементов, так как соприкосновение звеньев происходит по поверхности и удельное давление в них невелико. Кроме того, эти кинематические пары обладают свойством инверсии (обратимости), то есть характер относительного движения не зависит от того, какое из двух звеньев закреплено.

Рис. 9


Если элементом соприкосновения звеньев является линия или точка, то такая пара называется высшей. Примером высшей кинематической пары может служить кулачковый механизм (рис. 9а) и зубчатая передача (9б). Удельное давление в таких механизмах очень велико, что вызывает повышенный износ их элементов и является большим недостатком. Однако ценным достоинством высших кинематических пар является их разнообразие. С их помощью значительно упрощается создание механизмов, обеспечивающих заданные сложные законы движения. Различают плоские и пространственные кинематические пары.

Плоские кинематические пары

Плоской называется кинематическая пара, все точки звеньев которой в относительном движении перемещаются в одной или в параллельных плоскостях.

Плоские кинематические пары получили наибольшее распространение в технике; они проще, потому рассматриваются в первую очередь. Положение отдельно взятого звена в любой момент плоского движения определяется тремя независимыми координатами. Так, положение звена АВ (рис. 10) может быть задано двумя координатами x>1, y>1 любой его точки, например точки А, и третьей координатой – углом наклона φ>1 звена к одной из координаных осей. Вместо угла φ>1, достаточно знать любую из двух независимых координат точки В (х>2 или y>2).

Рис. 10


Действительно, рассматриваемое звено АВ может совершать два независимых поступательных движения вдоль координатных осей ОХ, ОY и одно вращательное движение вокруг оси OZ, перпендикулярной к плоскости ХОY.

А так как известно, что количество независимых координат определяет число степеней свободы, то, понятно, это отдельное звено в любой момент плоского движения имеет три степени свободы.

Если рассмотренное звено войдет в кинематическую пару с другим звеном, то оно окажется уже не свободным – на его относительное движение накладываются связи, уменьшающие число степеней свободы.

Рис. 11


Так, положение двух звеньев, образующих низшую вращательную кинематическую пару (рис. 11), в любой момент плоского движения может быть определено четырьмя независимыми координатами, например, x>1, y>1, φ>1, φ>2. Координаты x>1, y>1, φ>1 определяют положение на плоскости звена 1; для определения относительного положения звена 2 достаточно знать угол φ>2.

Это означает, что система имеет четыре степени свободы (но не шесть, как было до соединения звеньев в кинематическую пару).

То есть соединение двух звеньев в низшую вращательную кинематическую пару отнимает у системы две степени свободы.

Если в рассмотренной кинематической паре ограничить подвижность звена 1, например, зафиксировать точку А (рис. 12), совместив ее с началом координат, то положение такой системы на плоскости будет определяться двумя независимыми координатами φ>1, φ>2. То есть система будет иметь всего две степени свободы. Звенья высшей кинематической пары (рис. 13), взятые порознь, в любой момент плоского движения обладают в сумме шестью степенями свободы. Если же они объединены в кинематическую пару, то для однозначного указания положения этой системы на плоскости требуется пять независимых параметров, например, x