Оптический флюорит - страница 5

стр.

в кристалле, может достигать в сильно деформированных кристаллах 10>12. В хороших оптических кристаллах фтористого кальция она составляет 10>4 и менее на 1 см>2. Плотностью дислокаций, их распределением и перемещением внутри кристалла определяются механические свойства флюорита.

Объемными дефектами являются блочность, мозаичность, широко проявляющиеся как на природных, так и на искусственных кристаллах флюорита (фото 2, см. вкл.), участки с внутренними напряжениями, скопления включений и т. п.

Дефектность структуры флюорита оказывает большое влияние на его оптические свойства. Примеси редкоземельных элементов, вакансии и другие точечные дефекты приводят к снижению пропускания в УФ-области спектра, появлению полос поглощения в видимом диапазоне и окрашенности кристаллов.

Природа разнообразной окраски и люминесценции флюорита детально рассмотрена в ряде работ [Пшибрам, 1959; Архангельская, 1970; Марфунин, 1974, 1975; Платонов, 1976; Таращан, 1978]. Простейшим центром окраски является F-центр (Farbe, нем. — цвет), представляющий собой вакансию отрицательно заряженного иона (аниона), захватившую электрон. Поглощение энергии F-центром соответствует переходу F-электрона с одного уровня на другой.

Величина поглощенной энергии ΔЕ = Е>2—Е>1 принимает не непрерывные значения, а «квантуется» — поглощение происходит дискретными порциями, квантами энергии hv: ΔE = hv, где h — постоянная Планка, равная 6,626∙10>-34 Дж∙с; v — частота, с>-1. Вместо частоты используется волновое число, обратное длине волны: v' = 1/λ, (см>-1), которое связано с частотой отношением v' = v/c, где с — скорость света, м/с.

Таким образом, ΔE = hcv' = hc1/λ. Из этого уравнения видно, что чем больше величина поглощенного кванта, тем меньше длина волны, соответствующая поглощению света веществом. Таким образом, спектральное положение F-полосы определяет окраску кристалла.

Первые эксперименты по искусственному окрашиванию флюорита были выполнены Л. Вёлером в 1905 г. Он окрасил кристалл флюорита в синий цвет, нагревая его в парах кальция. Впоследствии эксперименты по аддитивному окрашиванию природного флюорита провели Г. Хаберландт и Е. Мольво. В спектрах поглощения таких кристаллов присутствуют две полосы поглощения — 375 (α-полоса) и 520 нм (β-полоса) — так называемый спектр Мольво, которые отождествляются с поглощением на F-центрах. Было установлено, что при аддитивном окрашивании в кристалле возникает избыточное, по сравнению со стехиометрическим составом, содержание атомов щелочного металла (обычно порядка 10>16—10>19 атомов на 1 см>3). Это, в свою очередь, приводит к избытку свободных электронов, которые, перемещаясь по кристаллу, захватываются анионными вакансиями с образованием F-центров. Теоретические расчеты также дают количественное соответствие между величиной полного спектрального поглощения в F-полосе и тем избыточным количеством щелочного металла, которое устанавливается химическим анализом окрашенного кристалла. Кроме того, известно, что плотность аддитивно окрашенных кристаллов флюорита обычно меньше, чем у неокрашенных, за счет присутствия вакансий, однако твердость их выше.

Другим методом искусственного создания центров окраски является облучение кристаллов жестким излучением — рентгеновскими, γ-лучами, частицами высоких энергий. Активация центров окраски происходит и в природных условиях.

В кислородсодержащих кристаллах флюорита с высоким содержанием анионных вакансий после радиационного окрашивания П. П. Феофилов обнаружил две полосы поглощения — 370 и 560 нм, которые он отождествил с F>2-центрами, представляющими собой парные анионные вакансии с двумя локализованными на них электронами. Такие же центры были обнаружены и в кристаллах SrF>2.

В природных кристаллах флюорита обычно наблюдаются сложные центры окраски, представляющие собой агрегаты из двух, трех и четырех примыкающих друг к другу элементарных F-центров. Соответственно они обозначаются: F>2-, F>3- и F>4-центры или М (F>2-центр), R>1 и R>2 (F>3-центр), N (F>4-центр). В природных условиях образованию F-агрегатных центров способствует диффузия дефектов решетки с их последующей агрегацией в процессе роста и дальнейшего существования кристалла в изменяющихся температурных и радиационных полях. Такие сложные центры наиболее устойчивы к термическому обесцвечиванию. Они в противоположность простым F-центрам, как бы пройдя «естественный отбор», чаще наблюдаются в природных кристаллах.