От абака к цифровой революции - страница 6
Для данного числа N, из которого мы хотим извлечь квадратный корень, находится два приближенных значения а>1 и Ь>1 квадрат одного из которых больше N, другого — меньше. Далее рассчитывается значение а>2 = (a>1 + b>1)/2, после чего его квадрат сравнивается с N. Если он больше N, то а>2 заменяет прежнее значение, большее N. Если же он меньше N, а>2 заменяет меньшее из значений. Этот процесс повторяется до тех пор, пока не будет найдено число, квадрат которого точно или с достаточной точностью равен N.
Вавилоняне также умели решать системы уравнений и уравнения второй степени с вещественными корнями. Эти задачи упоминаются в текстах, датируемых примерно 2000 годом до н. э. «Протоматематики» Вавилонии также умели решать некоторые уравнения третьей степени. Уравнения вида x>3 = а или х>3 + х>2 = с решались с помощью таблиц. Более сложные уравнения, имевшие вид ах>3 + Ьх>2 = с, сводились к уравнениям первых двух видов.
Анализ вавилонских текстов показывает, что математика была для вавилонян не просто средством решения практических задач. В этом заключается ее фундаментальное отличие от древнеегипетской математики, которая считалась намного более утилитарной. Вавилоняне достигли значительных успехов в арифметике и алгебре, но в отличие от египтян не преуспели в геометрии. Знания геометрии в Вавилонии касались лишь немногих фигур, в частности треугольников и четырехугольников.
* * *
УРАВНЕНИЯ ВТОРОЙ И ТРЕТЬЕЙ СТЕПЕНИ
Уравнения второй степени вида ах>2+ Ьх + с = 0 обычно решаются с помощью формулы
Эта формула позволяет получить вещественные решения, когда дискриминант положителен или равен нулю, то есть выражение Ь>2 — 4ас больше либо равно нулю.
Для решения уравнений вида ах>3 + Ьх>2 = с вавилоняне умножали уравнение на (а>2/Ь>3) и получали уравнение вида (ах/b)>3 + (ах/b)>2 = са>2/Ь>3 Оно решалось с помощью таблиц для уравнений вида х>3+ х>2 = с, после чего рассчитывалось значение х.
* * *
Однако труды вавилонян, посвященные окружностям, сохранились до наших дней. Именно вавилоняне разделили окружность на шесть частей построением окружностей радиуса, равного радиусу исходной окружности. Каждая из этих частей делилась на 60; таким образом, вся окружность делилась на 360 градусов. Так как использовалась шести десятеричная система, то градусы делились на 60 минут, минуты — на 60 секунд. В качестве приближенного значения π использовалось значение π = 3, хотя в табличке, найденной в Сузах, путем сравнения периметра шестиугольника и длины окружности получено значение π = 31/8.
Построение шестиугольника, вписанного в окружность. Сторона шестиугольника равна радиусу окружности.
В древнеегипетской системе счисления для степеней десяти использовались отдельные символы. Так, существовали особые символы для единиц, десятков, сотен и так далее.
Египетская система счисления, в отличие от вавилонской, не была позиционной. Далее мы продемонстрируем иероглифы, соответствующие наиболее часто используемым числам.
Египетская система счисления была аддитивной, в отличие от нашей системы счисления, которая, подобно вавилонской, является позиционной. В аддитивной системе счисления, например, число 3204 представляется в виде 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1. В виде египетских иероглифов оно записывается так:
С помощью этой системы можно было записывать большие числа. Кроме того, упрощались операции сложения и вычитания. При сложении чисел значения «переносились» в старший разряд, при вычитании — «забирались» из старших разрядов. Умножение сводилось к сложению и вычитанию интересным, но непростым способом.
Рассмотрим, как выполнялось умножение, на примере чисел 17 и 53. Нужно взять пару чисел 1 и 53 и удвоить их. Результатом удвоения будут числа 2 и 106. Повторив эту операцию, получим 4 и 212. Нужно удваивать числа до тех пор, пока первое из них не превысит 17. После этого процесс прекращается, а результат, полученный на последнем шаге, игнорируется. Результатом этих действий в нашем примере будут следующие пары чисел.
Теперь нужно определить, как можно получить 17 путем сложения чисел из первого столбца. Единственный возможный способ получить 17 — сложить 1 и 16. Следовательно, для получения результата умножения нужно сложить значения, записанные справа от 1 и 16, то есть 53 и 848. Их сумма равна 901. Таким образом, результат умножения 17 на 53 равен 901.