Открытие без границ - страница 22
Метод исчерпывания позволял получить верные доказательства, если его предпосылки были верны (так было в большинстве случаев), но обладал определенным недостатком: с его помощью нельзя было получить новые результаты. Напомним, что в этом методе результат считался истинным и рассматривались возможные способы, которыми можно было прийти к этому результату. Например, было известно, что формулы объема конуса и пирамиды, доказанные Евдоксом, были получены математиками прошлого, в частности Демокритом, без каких-либо выводов или доказательств.
В настоящее время нам известен метод интегрирования, позволяющий произвести необходимые вычисления по четко определенному алгоритму. Это означает, что необходимые расчеты может произвести машина. В основе этого метода лежит сформулированная древнегреческими математиками идея, тесно связанная с аппроксимацией площади фигуры с помощью прямоугольников, о чем мы говорили выше (в некотором роде метод исчерпывания схож с современным методом суммирования по Риману).
Этот метод заключается в построении ряда прямоугольников, высота которых не превосходит высоту кривой, иными словами, прямоугольников, нижнее основание которых располагается на оси, а верхнее — под искомой кривой.
Сумма площадей всех прямоугольников, построенных по этому методу, будет очевидно меньше, чем площадь искомой фигуры. С увеличением числа прямоугольников их общая площадь будет все ближе к значению площади фигуры, ограниченной кривой. Это же построение можно повторить так, чтобы верхние основания прямоугольников находились над кривой.
* * *
ИНТЕГРИРОВАНИЕ «ОТ РУКИ»
Существует простое механическое устройство — интегратор, позволяющий автоматически вычислять площадь, ограниченную плоской непрерывной кривой. Оно напоминает устройства, используемые для измерения расстояний на картах, и состоит из небольшого колеса и счетчика числа оборотов, который указывает расстояние, пройденное колесом при перемещении по карте, например вдоль автомагистрали. Механический интегратор имеет схожий принцип действия. Если обвести интегратором замкнутую фигуру, ограниченную кривой, по контуру, счетчик укажет площадь этой фигуры. Это устройство используется при проектировании форм и образцов, так как позволяет определить, сколько материала потребуется для изготовления изделий.
* * *
Так мы гарантируем, что сумма площадей прямоугольников будет больше искомой площади. Теперь мы снова можем увеличить число прямоугольников, и сумма их площадей вновь будет приближаться к искомой, на этот раз сверху. Мы получим две последовательности площадей, приближающихся к искомой площади снизу и сверху соответственно. Так в схематичном и упрощенном виде происходит вычисление площадей. Похожий метод используется и для вычисления объемов.
Результаты сравниваются со значением, которое, как предполагается, должна иметь данная величина (напомним, что метод исчерпывания используется для проверки уже известного результата). С помощью оценок данной величины сверху и снизу мы подтверждаем, что если эти оценки превосходят искомую величину, это приводит к противоречию. Позднее, в XVII веке, этот метод получил название «апагогия», или «доведение до абсурда».
В любом случае в методе неизбежно рассматривается актуальная бесконечность, для чего в современном анализе выполняется переход к пределу. Если бы древние греки применили этот подход при решении этой и других схожих задач, то добились бы потрясающих результатов.
Кеплер был одним из первых математиков Возрождения, который занялся вычислением объемов, причем не совсем в обычных обстоятельствах: впервые он обратил внимание на эту задачу в тот самый день, когда сочетался вторым браком с Сюзанной Рейтингер (его первая жена скончалась годом ранее). Это был брак по расчету, так как Кеплер искал женщину, которая позаботилась бы о нем и его детях и вела быдомашнее хозяйство. Сюзанна, должно быть, понимала, насколько необычным характером отличался ее будущий муж, поскольку она не удивилась, когда он покинул свадебное торжество, чтобы подробно изучить, как трактирщик измеряет объем вина в бочках. Бочки не имели строго цилиндрическую форму, и объем измерялся с помощью мерного стержня, который опускался в них через отверстие в крышке.