Открытие без границ - страница 32

стр.

Так происходит, например, в случае с последовательностью


о которой мы говорили в главе 2 и которая сходится к числу √2, а оно не является рациональным. Разумеется, мы можем построить прямоугольный треугольник, гипотенуза которого будет равна √2, но так мы определим это число геометрически, а во времена Коши математики пытались дать определение числам чисто арифметическими или аналитическими методами. Рациональные числа, по сути, вообще не были определены как числа, пока Дедекинд и, позднее, Кантор не сформулировали для них точной дефиниции. Последний сделал не только это, но и устранил промежутки на числовой прямой, которых в действительности существует бесконечное множество, так как иррациональных чисел, равно как и рациональных, бесконечно много.

Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.

Глава 5

Рай Кантора

Возможно, было бы небольшим преувеличением заявить, что открытия Кантора стали поворотным моментом в истории всей математики, хотя есть и те, кто придерживается именно этой точки зрения. Однако, без сомнений, его достижения ознаменовали поворотный момент в изучении бесконечности.


Ряды Фурье

Жан-Батист Жозеф Фурье (1768–1830) был математиком-провидцем, он вошел в число пионеров нового раздела математики — математического анализа, и создал одну из наиболее широко используемых теорий в истории прикладной математики. Среди его работ особенно выделяется «Аналитическая теория тепла» (возможно, важнейшая из опубликованных им работ), в которой основное внимание уделялось теплопроводности. Этот труд не только имеет исключительную научную ценность, но и стал первым в истории трудом по математической физике.

Разложение функции в ряд заключается в представлении произвольной функции в виде бесконечной суммы других функций. Преимущество этого приема в том, что с функциями, составляющими бесконечную сумму, работать проще, чем с исходной функцией. Ряды Фурье не были первым примером разложения функции в ряд — в то время уже достаточно часто использовалось разложение в степенной ряд Тейлора. Основное требование при разложении в ряд Тейлора звучало так: поведение рассматриваемой функции должно быть полностью определено на небольшом интервале.

Разложение в ряд Тейлора возможно для множества функций, но имеет один недостаток: оно может применяться исключительно локально, то есть позволяет узнать поведение функции в небольшой окрестности, но никак не определить ее поведение в целом. Для решения этой задачи Фурье рассмотрел разложение функции на простые составляющие, как правило, синусоидальные функции. Волны, на которые раскладывались функции при преобразованиях Фурье, получили название гармонических колебаний, а изучавший их новый раздел математики был назван гармоническим анализом.

Возможность представления функции в виде суммы тригонометрических функций синуса и косинуса обладает огромным преимуществом с точки зрения математики, так как для синуса и косинуса легко построить график, вычислить производную и интеграл. Фурье доказал, что любую периодическую функцию f(х) при соблюдении некоторых ограничений можно представить в виде бесконечной суммы функций синуса и косинуса. Тем не менее разложение в ряд Фурье ставит два важных вопроса, на которые непросто дать ответ, так как они затрагивают самые основы математического анализа и касаются теорем о существовании и единственности. Звучат эти вопросы так: во-первых, при каких условиях существует ряд, который действительно сходится к данной функции, и, во-вторых, если такой ряд действительно существует, является ли он единственно возможным?

В 1870 году Кантор сформулировал теорему, содержащую критерий сходимости ряда Фурье, в следующем году — вторую теорему, которая дополняла первую и касалась единственности ряда Фурье для данной функции. При этом Кантор столкнулся с проблемой: эта теорема не имела общего характера, и существовали точки, в которых она не выполнялась, причем таких точек было бесконечно много, и их множества перемежались с множествами точек, в которых теорема была верна. Так Кантор столкнулся с иррациональными числами. Встал вопрос, выходивший далеко за рамки разложения функции в ряд и за рамки понятия бесконечности. Кантор начал серьезно рассматривать взаимоотношения между непрерывным и дискретным на множестве вещественных чисел. С одной стороны, имелась прямая, на которой из чисто геометрических соображений точки распределялись непрерывно, с другой стороны, с арифметической точки зрения распределение этих точек было дискретным. Проблема заключалась в самом определении вещественного числа, точнее в определении иррационального числа (см. приложение «Множества чисел»).