Открытие без границ - страница 34

стр.

Расширив множество рациональных чисел

, Кантор перешел к новому множеству , которое назвал множеством вещественных чисел. Некоторые считают, что выбор этого названия был продиктован существованием мнимых чисел, о которых в то время было уже известно, однако есть основания полагать, что Кантором двигали иные причины. В «Основаниях общей теории множеств» он использует понятие предела и отказывается от понятий числовой величины, называя введенное им множество множеством вещественных чисел. Это очень важная деталь: она указывает, что Кантор был готов принять актуальную бесконечность не как спекуляцию, а как реальный математический объект — столь же реальный, как целые или дробные числа.


Вещественная прямая

Прямая — это бесконечное множество точек, расположенных на линии. Кантор, работая над определением вещественной прямой, следовал путем, который мы уже описали в предыдущих главах: он обозначил начало отсчета и выбрал единицу измерения. В начальную точку он поместил число 0, справа от него — целые положительные числа, слева — отрицательные. Добавим к ним рациональные числа, то есть дроби: положительные расположим справа, отрицательные — слева. Напомним, что с добавлением рациональных чисел эта прямая приобрела свойство плотности, согласно которому между двумя любыми рациональными числами всегда находится другое рациональное число.

Вы уже знаете, какой масштабный кризис вызвало открытие числа √2 в древнегреческой математике. Суть проблемы заключалась в том, что это число можно было совершенно четко представить с помощью прямоугольного треугольника с катетами единичной длины, но длина гипотенузы этого треугольника, выражаемая иррациональным числом, не входила во множество точек прямой, на которой мы определили единицу измерения катетов. Таким образом, длина гипотенузы имела смысл как величина, но не существовала как число. В этом смысле можно было утверждать, что вещественная прямая содержала бесконечное множество промежутков, пустых точек, которым не соответствовали никакие числа, следовательно, вещественная прямая не была непрерывной.

С введением иррациональных чисел всем точкам этой прямой оказались присвоены числа, рациональные или иррациональные, и промежутки на ней исчезли. Теперь прямая по праву могла называться вещественной.

С другой стороны, утверждение, согласно которому прямая как геометрическая сущность полностью, без промежутков, заполнена числами, оставалось не до конца обоснованным. Размышления на эту тему привели к тому, что Кантор стал больше интересоваться непрерывностью, чем бесконечностью, и определил важнейшее понятие счетности, которое стало первой альтернативой понятию бесконечности.


Кардинальные числа

Кантор столкнулся с проблемой подсчета бесконечности. Ранее потенциальная бесконечность определялась через возможность беспредельно добавлять к ряду или последовательности все новые и новые элементы, но Кантор предложил ввести понятие актуальной бесконечности, иными словами, начать использовать бесконечность как еще одну математическую сущность. Для этого следовало пересмотреть и полностью формализовать такое элементарное арифметическое действие, как простой подсчет совокупности объектов, что требовало решения двух задач: нужно было, во-первых, четко определить, что понимается под совокупностью объектов, и, во-вторых, дать математическое определение подсчету объектов совокупности.

Первая задача была решена с помощью теории множеств, которую на тот момент уже разработал Больцано. Кантор расширил и дополнил ее, что дало возможность вести речь об элементах множества как о совершенно абстрактных сущностях.

Многие историки науки считают теорию множеств Кантора одним из самых выдающихся творений человеческой мысли. Мы не будем вдаваться в детали этой теории, так как в нашем контексте будет достаточно нескольких интуитивно понятных определений, однако отметим, что понятие множества является одним из фундаментальных понятий математики, так как на него опираются все теоретические основы науки. Анри Пуанкаре (1854–1912) как-то сказал, что математик — это человек, дающий разным вещам одно наименование. Эта короткая и немного ироничная фраза отражает важную истину: конечная цель, к которой стремятся математики, — обобщение.