Парадоксы мозга - страница 27
Мозг только кажется совершенно неприступным. Три далеко не замысловатых изобретения – создание красителя, производство микропипеток, умение тщательно растереть мозг в ступке, а затем отцентрифугировать полученную кашицу – создали условия для бурного развития морфологии, физиологии и биохимии мозга. Правда, этому предшествовало появление микроскопа, точных электроизмерительных приборов, высокоскоростных центрифуг и аппаратуры, позволяющей осуществлять точнейший биохимический анализ. Но все эти приборы, казавшиеся в момент их создания чудом совершенства, предназначались не только для изучения мозга. История трех изобретений показывает, как трудно дается изучение мозга и как новое орудие исследователей помогает добиваться победы, вырывать у мозга его очередные тайны.
Думающая «тара»
Как ни странно, мода играет в человеческой жизни заметную роль. В наши дни ей посвящают большие исследования и пишут на эту тему диссертации. Несколько лет назад в Англии группа исследователей провела серьезное изучение, посвященное отношению общества к вещам. Их выводы сводились к следующему: за пять лет до вхождения в моду новых моделей эта одежда «аморальна», за три года становится «кричащей», а за год – всего лишь «смелой». Разумеется, она прекрасна, когда в моде. Но год спустя – безвкусна, через пять лет – ужасна, через двадцать – комична, а через тридцать… оригинальна.
Народная мудрость не разделяет такого отношения к одежде. На этот счет существует множество пословиц и поговорок. Говорят, что по одежде встречают, а провожают по уму, что не одежда красит человека, а человек одежду. Об «одежде» нервных клеток, об их оболочках такого никак не скажешь. Безусловно, ни оболочка нейрона отдельно от его содержимого, ни содержимое нервной клетки отдельно от ее оболочки существовать не могут. И то и другое одинаково необходимо, но для нас важнее оболочка, мембрана, покрывающая нейрон, так как мы думаем, воспринимаем, творим с помощью оболочек. Это их прямая и к тому же важнейшая обязанность.
Работа мозга заключается в передаче, распределении, переадресовке потоков информации по нейронным цепям, в обработке собранной информации и формировании на этой основе команд исполнительным органам. Эти обязанности возложены на наружные оболочки. Как мы уже знаем, они у нейрона удивительно прочны, выдерживают тщательное растирание в ступке, между тем как у большинства других клеток организма их толщина ничтожна, всего 5 микрометров. Мембрана нейронов состоит из двух слоев молекул жироподобных веществ – липидов, выстраивающихся таким образом, что их легко смачиваемые водой концы образуют наружную и внутреннюю поверхность мембраны, а те концы молекул липидов, которые смачиваются ею хуже, оказываются спрятанными в толще клеточной оболочки.
Живые организмы умеют отлично сочетать типовые и индивидуальные формы строительства. Клеточные мембраны монтируются из стандартных блоков – молекул липидов. Индивидуальность, неповторимость им придают молекулы специфических белков, встроенные в липидную стенку или использованные для «отделки» наружного фасада нейрона. Белковые включения являются специальным оборудованием клеточной оболочки, ее рабочими элементами. Они несомненно самые важные части оболочки мембраны, так как именно на них возложено выполнение всех ее специфических обязанностей.
У липидной основы клеточной оболочки задача проще. Она должна обеспечить постоянство внутриклеточной среды. Однако неверно думать, что оболочка представляет собой действительно надежную преграду. По существу мембрана – это особая жидкость, тончайшим слоем обволакивающая жидкое внутриклеточное содержимое, а белковые включения «плавают» на ее поверхности или, как подводные лодки, находятся в «погруженном» состоянии. И тем не менее «жидкая» оболочка обладает достаточным запасом прочности. Когда в нее упирается микроэлектрод, она, прежде чем расступиться, выгибается под его воздействием, оказывая существенное сопротивление.
Как ни плотно упакованы в мозгу нервные и глиальные клетки, между ними всегда находится межтканевая жидкость. Ее состав серьезно отличается от того, что находится внутри нейрона. В протоплазме нервной клетки в десять раз меньше натрия, чем во внеклеточной жидкости, и примерно в десять раз больше калия. Для клетки чрезвычайно важно, чтобы ее внутриклеточная среда не менялась, а между тем ее тонкая оболочка не может быть непреодолимым препятствием для ионов натрия и калия. Они просачиваются в поры между молекулами липидов, благодаря чему клеточная среда беспрерывно обогащается натрием и не менее интенсивно теряет калий.