Поиски жизни в Солнечной системе - страница 8

стр.

Связь между генами и белками весьма непроста, но вполне понятна. Чтобы выжить, организм должен синтезировать великое множество разнообразных типов белков. Но белковые молекулы — это огромные и чрезвычайно упорядоченные структуры, которые построены из отдельных аминокислот, и если бы каждому организму приходилось заново выбирать, в какой последовательности соединить аминокислоты, чтобы наилучшим образом синтезировать необходимые белки, он бы не смог выжить. Поэтому информация — необходимое для жизни и незаменимое генетическое наследство — должна передаваться от родителей к потомкам. Если бы нужные последовательности аминокислот могли быть скопированы с уже существующих белковых молекул, то нуклеиновые кислоты оказались бы ненужными. Однако по своему строению белковые молекулы не годятся для копирования. В то же время последовательность нуклеотидов, образующих полинуклеотидные молекулы, может быть легко скопирована. Поэтому программы "сборки" белковых молекул закодированы в нуклеиновых кислотах, и именно они копируются в каждом поколении и передаются по наследству.

Разумеется, сами по себе белки и нуклеиновые кислоты еще не образуют организма. Чтобы ферменты могли синтезировать все новые молекулы нуклеиновых кислот, ферментов и других веществ, необходимых для построения организма, им нужно исходное сырье, а также источник энергии и растворитель. Растворитель (вода) фактически представляет собой основной компонент большинства живых существ. (Более подробно об источниках энергии и воде мы будем говорить дальше.) Имея в своем распоряжении исходное сырье, энергию и воду, генетическая система получает возможность сформировать организм, включая все те структуры, которые сами по себе лишены генетических свойств, например мембраны, окружающие каждую клетку.

Помимо этих основных условий для создания организма в генетической информации должна содержаться программа, определяющая порядок "работы". Ведь тысячи генов, в которых записана программа построения живой системы, не существуют все одновременно в активном состоянии. В ходе сложных стереотипных изменений, составляющих основу индивидуального развития организмов, особенно у многоклеточных растений и животных, различные гены активируются не одновременно и в разных клетках. Рассмотрим простой пример. Гемоглобин вырабатывают только определенные клетки организма, и гены, несущие информацию, необходимую для синтеза двух аминокислотных цепей, образующих этот белок, активны только в тех клетках, которые производят гемоглобин, хотя присутствуют во всех. Более того, гемоглобин, синтезируемый в клетках эмбриона млекопитающих, отличен от того, который синтезируется в клетках взрослых особей. Это означает, что разные гены гемоглобина вступают в действие на различных стадиях развития организма. Закономерности такого рода, присущие всем генам и клеткам организма, обеспечивают формирование отдельной особи — будь то животное или растение, — начиная с момента оплодотворения. Программа управления этим процессом генетически закодирована. Природа управляющих сигналов и различных механизмов, включаемых в ходе развития, еще не совсем понятна — это предмет многих современных биологических исследований.

Откуда же информация поступает в гены? Непосредственный источник ее — гены родителей. Первичным же источником этой информации являются случайные мутации — произвольные изменения отдельных нуклеотидов, а иногда более значительные перестройки ДНК, отобранные и закрепленные в процессе естественного отбора. Мутантные гены реплицируются[2] так же, как и все другие, но при трансляции[3] они дают начало белкам с новой последовательностью аминокислот и новыми свойствами или вызывают образование измененных генетических программ развития. В большинстве случаев возникшие мутации либо вредны, либо бесполезны и поэтому отсеиваются в процессе естественного отбора. Однако иногда мутация приводит к синтезу нового полезного белка или изменению процесса индивидуального развития, что дает то или иное преимущество особи, обладающей им. Такая мутация сохраняется и распространяется благодаря естественному отбору, так как несущие ее особи оставляют в среднем больше потомства, чем не имеющие ее. В конце концов мутантный тип может стать доминирующим в популяции.