Полеты по программе «Интеркосмос» - страница 14
Микроскопическое исследование структуры материалов, полученных одновременно в условиях космического полета и на Земле (при прочих идентичных условиях), показывает, что кристаллы, выращенные в космосе, меньше, чем аналогичные кристаллы, полученные на Земле. Причина заключается в том, что в космосе миграция ионов в расплаве происходит лишь путем диффузии: именно такое влияние оказывает невесомость на процесс зародышеобразования и роста кристаллов из жидкой фазы. Влияние же невесомости на эвтектические растворы противоположно: кристаллы обеих фаз эвтектики больше, чем полученные на Земле.
Процесс затвердевания кристаллов в космосе подвержен влиянию микрогравитации. И хотя она была мала в данном эксперименте, но все же на внешней поверхности образца можно заметить следы воздействия радиальной составляющей микрогравитации, зарегистрированной в ходе эксперимента. Оказывается, что поле тяготения порядка 10>–6g достаточно, чтобы повлиять на конфигурацию атомов в исследованной расплавленной системе, а также на процесс затвердевания.
Следующий эксперимент относился к медико-биологическим. С целью изучения кислородного режима в тканях человека, находящегося в условиях невесомости, был проведен советско-чехословацкий эксперимент «Кислород». Он выполнялся с помощью прибора «Оксиметр», разработанного специалистами ЧССР.
У человека и животных для сохранения и поддержания достаточного количества энергии непрерывно должны протекать процессы окисления, требующие постоянного притока кислорода. Длинный и сложный путь поступления кислорода в ткани организма определяется согласованной функцией легочного дыхания и кровообращения. И если динамика поступления кислорода в легкие и его перенос кровью изучены достаточно хорошо, то наука мало что знает о том, где и как происходит «стыковка» кислорода с тканями живого организма и как используется кислород тканевыми ферментами. Важнейшим показателем взаимодействия этих двух процессов является так называемый уровень напряжения в тканях организма.
В условиях невесомости наступает перераспределение крови из нижних участков тела в верхние, возникает переполнение кровью сосудов головы и верхней части тела. Это может сказаться на кислородном снабжении различных участков тела и изменении кислородного насыщения крови, а следовательно, и тканей организма. С помощью прибора «Оксиметр» с набором специальных датчиков, позволяющего вести исследования кислородного режима ткани, в эксперименте «Кислород» выяснялось, как изменяется уровень напряжения кислорода в тканях во время космического полета и изменяется ли в процессе полета доставка кислорода в ткани космонавта. Кроме того, изучался характер потребления кислорода тканями в полете.
Полученные в ходе эксперимента «Кислород» данные позволяют оценить интенсивность окислительных процессов в тканях космонавта в условиях невесомости, т. е. тех процессов, которые являются показателем интенсивности энергетического обмена в организме, что имеет существенное значение для оценки эффективности профилактических мероприятий, проводимых на борту пилотируемых аппаратов.
Следующий эксперимент из серии медико-биологических, «Опрос», был подготовлен специалистами СССР, ЧССР и ПНР. В ходе полета международного экипажа эксперимент проводился дважды: космонавты ответили на вопросы специального медико-психологического опросника о состоянии здоровья и воздействии внешней среды на психическую деятельность, о выполнении поставленных задач. Материалы данного эксперимента позволяют оценить изменения в субъективной сфере человека, адаптирующегося к необычным факторам окружающей среды, и будут использоваться при дальнейшем совершенствовании условий проживания и деятельности человека в замкнутом объеме.
Цель медико-биологического эксперимента «Теплообмен-2» — изучить охлаждающие свойства среды, в которой обитают экипажи космических кораблей и орбитальных станций. Проблема эта возникает в связи с тем, что в условиях невесомости процесс охлаждения тел претерпевает значительные изменения, вызванные «выпадением» из процесса теплообмена важнейшего компонента — теплоотдачи за счет естественной конвекции. Поэтому отсутствие естественной конвекции в условиях невесомости компенсируется созданием принудительных потоков воздуха с помощью вентиляторов. Однако такой метод не может считаться идеальным, поскольку теплоотдача при естественной конвекции является процессом саморегулируемым.