Понятие времени и проблема континуума (примечания)

стр.

1

Кантор Г. Основы общего учения о многообразиях // Новые идеи в математике. СПб., 1914. Вып. 6.

2

Вейль Г. О философии математики. М.-Л., 1934. С. 102.

3

Уитроу Дж. Естественная философия времени. М., 1964. С. 9.

4

К сожалению, эта критика не имела той силы, которая могла бы поколебать поставленные элеатами и Платоном вопросы. (Руслан Хазарзар.)

5

Степин В.С. Теоретическое знание. М.: Наука, 2000. С. 651.

6

Там же.

7

«Случайность подталкивает то, что осталось от системы, на новый путь развития, а после выбора пути вновь в силу вступает детерминизм, и так до следующей бифуркации» (Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986. С. 28–29).

8

Классическая физика, правда, в отличие от Архимеда, не исключает время полностью, но делает его обратимым и тем самым несущественным.

9

Слово разрешение нужно заключить в кавычки, ибо, как вы увидите, Аристотель не только не разрешил апории, но и, похоже, вообще не понял проблемы (или сделал вид, что не понял), поставленной элеатами (Руслан Хазарзар.)

10

Увы, Гайденко не понимает проблематику апорий: логически не противоречиво, что тело может занять актуально бесконечное количество положений за ограниченное время, ибо сам ограниченный интервал времени состоит из актуально бесконечных мгновений, о чем, кстати, в другой форме говорит цитируемый Гайденко Аристотель. Проблема, поставленная элеатами, должным образом воспроизведена Анисовым (см. предыдущую статью). (Руслан Хазарзар.)

11

Американский философ Чарлз Пирс, убежденный в том, что апория «Стрела» затрагивает очень серьезные вопросы, связанные с природой движения, представил эту апорию в виде силлогизма. Большая посылка его гласит: «Никакое тело, не занимающее места больше, чем оно само, не движется». Меньшая посылка: «Никакое тело не занимает места больше, чем оно само». Вывод: «Следовательно, ни одно тело не движется». По мнению Пирса, ошибка Зенона кроется в меньшей посылке: в кратчайшее время движущееся тело занимает место, которое больше его самого на бесконечно малую величину. Из апории Зенона, как полагал Пирс, можно сделать лишь вывод, что вне времени тело не проходит никакого расстояния (см. Peirce C. S. Collected Papers. Cambridge, Mass., 1934. P. 334).

12

Интересно отметить, что наш современник Бертран Рассел согласен с древним философом в том, что движение можно составить из суммы неподвижностей. «Вейерштрасс, строго запретив все бесконечно малые, — пишет Рассел, имея в виду предложенную Вейерштрассом арифметизацию дифференциального исчисления, — показал в конечном счете, что мы живем в неизменном мире и что стрела в каждый момент своего полета фактически покоится. Единственным пунктом, в котором Зенон, вероятно, ошибался, был его вывод (если он действительно его сделал) о том, что, поскольку не существует никаких изменений, мир все время должен находиться в одном и том же состоянии как в одно время, так и в другое» (Russell B. The Principles of the Mathematics. London, 1937. P. 347). Рассел как логик, видимо, тяготеет больше к началу бытия, чем становления, поэтому ему созвучны некоторые мотивы элеатов. Однако, не будучи здесь все же столь последовательным, как Зенон, английский философ не может принять позицию, отрицающую всякую реальность становления, а значит, и реальность времени, поскольку время и есть условие возможности становления как такового. А ведь для Зенона признать наличие «одного и другого времени» уже означало бы впустить «бациллу» становления в вечное, неподвижное, неизменное, единое бытие!

13

И это неверно. Апории Стрела и Стадий действительно рассматривают проблемы, возникающие при дискретности пространства-времени, но эти апории приводят к парадоксу совершенно разными путями. По всей видимости, перед написанием данной статьи Гайденко, увы, не ознакомился в должной степени с темой — а именно с тем, что касается самих апорий. (Руслан Хазарзар.)

14

Увы, Аристотель меняет тезис. Проблема первых двух апорий заключается в другом, как это показано в предыдущей статье Анисова. А потому «опровержение» Аристотеля не касается самой проблематики, поставленной элеатами. Не исключено, что Аристотель не только неправильно понял апории, но и неправильно их передал (а ведь Аристотелева «Физика» — древнейших источник, по которому мы знаем апории). Иначе чем объяснить, например, столь странную формулировку апории Стадий: «Четвертый [аргумент] — о равных телах, движущихся по стадию в противоположных направлениях мимо [~ параллельно] равных [им тел]; одни [движутся] от конца стадия другие — от середины с равной скоростью, откуда, как он думает, следует, что половина времени равна двойному [= целому]. Паралогизм — в допущении, что как мимо движущегося [тела], так и мимо покоящегося равная [им] величина с равной скоростью движется равное время. Но это ложь. Так, например, пусть АА будут неподвижные тела равного размера, ВВ — тела, начинающие с середины, равные телам АА по числу и величине, а ГГ — тела, [начинающие] с конца, равные телам ВВ по числу и величине и обладающие равной скоростью с телами В. Тогда получается, что, когда [тела ВВ и ГГ] движутся друг мимо друга, первое В накладывается на последнее [Г] одновременно с тем, как первое Г — [на последнее В]. Получается, что Г прошло мимо всех [В], а В — мимо только половины [А], и поэтому затратило только половину [того] времени, [которое затратило Г], так как каждое из двух проходит мимо каждого за равное [время]. Одновременно получается, что первое В прошло мимо всех Г, так как первое Г и первое В одновременно наложатся на противолежащие крайние [А], (ровно за такое же время проходя мимо каждого из тел В, как и мимо каждого из тел А, как он говорит), так как оба они проходят мимо тел А за равное время. Так гласит аргумент, но вывод основан на упомянутом выше ложном допущении» (Физика. Z 9. 239 b 33)?.. (Руслан Хазарзар.)

15

Евклид. Начала. Kн. I–VI. С. 142.

16

Башмакова И.Г. Лекции по истории математики в древней Греции // Историко-математические исследования. М., 1958. С. 311.

17

Еще до Кавальери метод исчисления неделимых применил Кеплер в своей «Стереометрии винных бочек». Однако, подобно античным математикам, он рассматривал этот метод лишь как технику вычисления, а не как строго научный, т. е. математический метод.

18

Галилей Г. Избранные труды. В 2-х т. Т. 2. М., 1964. С. 131.

19

Там же, с. 131–132.

20

Там же, с. 132.

21

С помощью понятия «неделимых» Галилей пытается решить задачу «колеса Аристотеля»: при совместном качении двух концентрических кругов больший проходит то же расстояние, что и меньший. Как это возможно? «Разделяя линию на некоторые конечные и потому поддающиеся счету части, нельзя получить путем соединения этих частей линии, превышающей по длине первоначальную, не вставляя пустых пространств между ее частями; но представляя себе линию, разделенную на неконечные части, т. е. на бесконечно многие ее неделимые, мы можем мыслить ее колоссально растянутой без вставки конечных пустых пространств, а путем вставки бесконечно многих неделимых пустот» (Галилей Г. Избранные труды. В 2-х т. Т. 2. М., 1964. С. 135).

22

Цит. по: Клайн М. Математика. Утрата определенности. М., 1984. С. 176.

23

Цит. по: Lasswitz K. Geschichte der Atomistik, 1890. S. 191.

24

Кавальери Б. Геометрия, изложенная новым способом при помощи неделимых непрерывного. М.-Л., 1940. С. 277.

25

Там же, с. 89.

26

Там же, с. 91.

27

Вот что говорит об этом сам Кавальери: «От меня не скрыто, что о строении континуума и о бесконечном весьма много спорят философы, выдвигая такие положения, которые находятся в разногласии с немалым числом, моих принципов. Они будут колебаться либо потому, что понятие всех линий или всех плоскостей кажется им непонятным и более темным, чем мрак Киммерийский, либо потому, что мой взгляд склоняется к строению континуума из неделимых, либо, наконец, потому, что я осмелился признать за прочнейшее основание геометрии тот факт, что одно бесконечное может быть больше другого» (цит. по: Зубов В.П. Развитие атомистических представлений до начала XIX века. С. 223).

28

Cavalerius B. Geometria indivisibilibus continuorum nova quadam ratione promota. Bononial, 1635. Lib. VII. P. 2.

29

Галилей Г. Избранные труды. В 2-х т. Т. 2. М., 1964. С. 154.

30

Галилей называл их иногда «невеличинами», пытаясь избежать парадоксов. «Самая возможность продолжать деление на части приводит к необходимости сложения из бесконечного множества невеличин» (Галилей Г. Избранные труды. В 2-х т. Т. 2. М., 1964. С. 142).

31

Цит. по: Лурье С.Я. Математический эпос Кавальери // Кавальери Б. Геометрия, изложенная новым способом при помощи неделимых непрерывного. М.-Л., 1940. С. 37.

32

Там же, с. 39.

33

«Утверждали иногда, — пишет по этому поводу В.П. Зубов, — что Галилей продолжил традицию Демокрита. С гораздо большим основанием можно говорить, однако, о традиции Архимеда. Ведь мы знаем, что, по Демокриту, континуум слагался из элементов того же рода (тела из мельчайших тел и т. д.), тогда как у Архимеда речь шла об элементах n-I порядка» (Зубов В.П. Развитие атомистических представлений до начала XIX века. С. 215–216).

34

Декарт Р. Избранные произведения. М., 1950. С. 475.

35

Там же, с. 437–438.

36

В «Трактате о конических сечениях, изложенных новым методом» (1655) Валлис, ссылаясь на Кавальери, рассматривает площади плоских фигур как составленные из бесконечно многих параллельных линий. При этом, как пишет А.П. Юшкевич, «бесконечно малое количество то отождествляется нулевым, то параллелограммы бесконечно малой высоты объявляются вряд ли чем-либо иным, нежели линия…» (Юшкевич А.П. Развитие понятия предела до К. Вейерштрасса // Историко-математические исследования. Вып. XXX. М., 1986. С. 25). Валлис, таким образом воспроизводит те же принципы, что мы видели у Кавальери, и соответственно те же теоретические затруднения.

37

Юшкевич А.П. Идеи обоснования математического анализа в XVIII в. // Историко-математические исследования. Вып. XXX. М., 1986. С. 26.

38

Как полагают некоторые историки, если бы Ньютон углубил дальше свою идею «окончательного отношения» «исчезающих приращений», он предвосхитил бы строгие методы, разработанные Коши в XIX в. (Boyer C.B. The Concepts of the Calculus. New York, 1949. С. 196).

39

Мордухай-Болтовской Д.Д. Комментарии к Ньютону // Ньютон И. Математические работы. М.-Л., 1937. С. 289.

40

Интересно, что известный математик К. Маклоран, пытавшийся защитить ньютоновский метод флюксий от критики Дж. Беркли (в сочинении «Аналист», 1734 г.), в своем «Трактате о флюксиях» сближает метод Ньютона с методом исчерпывания Евклида, и Архимеда. В основе метода исчерпывания лежит сколь угодно точное приближение к искомой величине с помощью сходящихся к ней сверху и снизу последовательностей известных величин. Вот как формулирует сущность метода исчерпывания Маклоран: если две переменные величины AP и AQ, находящиеся друг к другу в неизменном отношении, одновременно приближаются к двум определенным величинам AB и AD так, что разности между ними оказываются меньшими любой заданной величины, то отношение пределов будет тем же, что и отношение переменных величин AP и AQ (Maclaurin C. Treatise of Fluxions in two Books. 1742. T. 1. P. 6).

41

Лейбниц Г.В. Сочинения. В 4-х т. М., 1984. С. 287.

42

Там же.

43

Там же, с. 157.

44

Там же, с. 158.

45

«Я признаю, — пишет Лейбниц, — что время, протяженность, движение и непрерывность в том общем смысле, который придается им в математике, суть вещи идеальные, т. е. выражающие возможность совершенно так же, как ее выражают цифры. Гоббс даже пространство определил как phantasma existentis. Но правильнее будет сказать, что протяженность — это порядок возможных сосуществовании, подобно тому как время — порядок возможностей не определенных, но тем не менее взаимозависимых» (Лейбниц Г. В. Сочинения. В 4-х т. М., 1984. С. 341). Определяя непрерывность через понятие возможности, т. е. как потенциально бесконечную, Лейбниц, как и Аристотель, не составляет математический континуум из актуально сущих неделимых. Однако не так обстоит дело в физике и метафизике Лейбница, где не протяжение, а сила есть истинное определение реально сущего, т. е. субстанций. Носители сил — это «формальные атомы», названные Лейбницем так в отличие от атомов материальных: формальные атомы — монады — являются метафизическими неделимыми. «… Сила есть нечто вполне реальное также и в сотворенных субстанциях; пространство же, время и движение имеют нечто от сущности разума и являются истинными и реальными не сами по себе, а лишь поскольку они причастны к божественным атрибутам — бесконечности, вечности, созиданию или силе творимых субстанций» (Лейбниц Г.В. Сочинения. В 4-х т. М., 1984. С. 262). Те виды континуума, которые перечисляет здесь Лейбниц, он характеризует как имеющие нечто от «сущности разума», что, собственно, и означает «идеальность», а не реальность их, ибо разум Лейбниц трактует здесь в духе номинализма. Вот определение различия между идеальным и реальным, данное Лейбницем в письме к Ремону: «В идеальном целое предшествует частям, как арифметическая единица предшествует дробям, на которые она делится и которые можно в ней обозначать произвольно, так как части только потенциальны; но в реальном простое предшествует агрегатам, части — действительны, предшествуют целому» (цит. по: Каринский В. Умозрительное знание в философской системе Лейбница. СПб., 1912. С. 189–190). Таким образом, в математике мы, по Лейбницу, имеем дело с потенциально бесконечным (возможным), иначе говоря, со становлением, а в метафизике — с актуально бесконечным, где целое представляет собой сумму бесконечного числа бытийных единиц — сверхчувственных монад. Трудности, связанные с понятием континуума, вызваны у Лейбница необходимостью согласовать эти две сферы — становление и бытие.

46

Лейбниц Г.В. Сочинения. В 4-х т. М., 1984. С. 294. Здесь в переводе фраза несколько утяжелена, и мысль Лейбница ясна не сразу. В сущности философ утверждает, что любая часть материи не только делима до бесконечности, но и актуально разделена на бесконечное множество физических точек.

47

Лейбниц Г.В. Сочинения. В 4-х т. М., 1984. С. 316.

48

Лейбниц Г.В. Сочинения. В 4-х т. Т. 3. М., 1984. С. 246.

49

Там же, с. 247.

50

Там же, с. 250.

51

Там же, с. 252.

52

Там же.

53

Там же, с. 253.

54

Там же, с. 254.

55

Там же, с. 255.

56

Там же, с. 256.

57

Там же.

58

Там же, с. 263.

59

Там же, с. 260.

60

Юшкевич А.П. Идеи обоснования математического анализа в XVIII в. // Историко-математические исследования. Вып. XXX. М., 1986. С. 14–15.

61

«Необходимо указать на источник, откуда вытекла эта идея в широкую публику и сделалась столь распространенной. Нет никакого сомнения, что таким первоисточником является открытие анализа бесконечных, и, говоря определеннее, мы можем утверждать, что Лейбниц как математик и философ ввел в общественное сознание идею непрерывности; мы можем даже сказать, что система Лейбница есть почти вся целиком коррелят его работ по анализу, гениальная транспонировка самим изобретателем математических данных на философский язык» (Флоренский П.А. Введение к диссертации «Идея прерывности как элемент миросозерцания» // Историко-математические исследования. Вып. XXX. М., 1986. С. 160).

62

Лейбниц Г.В. Сочинения. В 4-х т. Т. 2. М., 1984. С. 56.

63

Лейбниц Г.В. Сочинения. В 4-х т. Т. 1. М., 1984. С. 143.

64

Там же.

65

«…Не существует части вещества, в которой бы не было бесконечного множества органических и живых тел… Однако отсюда еще не следует, что всякая часть вещества одушевлена, точно так же как мы не говорим, что пруд, полный рыбы, одушевлен, хотя рыбы — одушевленные существа» (Лейбниц Г. Избранные философские сочинения. М., 1890. С. 240).

66

Leibniz G.W. Die philosophische Schriften. S. 624.

67

Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 66–67.

68

Там же, с. 68.

69

Там же, с. 69.

70

Там же, с. 319.

71

Вот что писал Лейбниц по поводу теории всемирного тяготения Ньютона: «… Я не желал бы, чтобы в естественном ходе природы прибегали к чудесам и допускали абсолютно необъяснимые силы и действия. В противном случае мы дадим во имя всемогущества Божия слишком много воли плохим философам, и раз мы допустим эти центростремительные силы или эти действующие издалека непосредственные притяжения, не будучи однако в состоянии сделать их понятными, то я уже не вижу, что помешает нашим школьным философам утверждать, что все совершается просто в силу способностей и поддерживать свои образы сущностей (species intentionales), которые будто бы исходят от предметов к нам и находят средство проникать до самой нашей души» (Лейбниц Г. Избранные философские сочинения. М., 1890. С. 208).

72

Как видим, Кант именует трансцендентальной не только созданную им впоследствии критическую философию.

73

Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 318.

74

Кант с самого начала оговаривает, что под метафизикой он здесь подразумевает учение о физических монадах, но не о монадах метафизических, которые составляют, согласно Лейбницу, последний фундамент бытия и должны объяснять природу также и физических монад. «Так как я намерен здесь рассуждать только о том классе простых субстанций, которые суть первичные части тел, то заранее заявляю, что в последующем изложении я буду пользоваться терминами простые субстанции, монады, элементы материи, первичные части тела как синонимами» (Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 319).

75

Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 323.

76

Увы, и такое положение связано с неразрешимыми трудностями, указанными мною в сноске к апории Стрела в предыдущей статье Анисова. Не случайно Кант впоследствии отказался от этой точки зрения. (Руслан Хазарзар.)

77

Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 324.

78

Кант И. Сочинения. В 6-ти т. Т. 1. М., 1963. С. 270–271.

79

Там же, с. 275.

80

Там же, с. 324.

81

Там же, с. 325.

82

Кант И. Сочинения. В 6-ти т. Т. 6. М., 1963. С. 103.

83

Там же.

84

Клайн М. Математика. Утрата определенности. М., 1984. С. 175. Характерно, что победитель конкурса, швейцарский математик С. Люилье представил работу под девизом: «Бесконечность — пучина, в которой тонут наши мысли» (там же).

85

Коши О.Л. Алгебраический анализ. СПб., 1864. С. 19.