Популярная аэрономия - страница 7

стр.

В гетеросфере вступает в силу закон: чем легче, тем больше. Ибо в знаменателе (2) стоит молекулярный вес данного газа М. Чем больше М, тем меньше H. А чем меньше H, тем быстрее падает с высотой концентрация этого газа. Пусть, например, высота однородной атмосферы для молекулярного азота (М = 28) на уровне турбопаузы (скажем, 110 км) равна 8 км. Для гелия (M = 4) она тогда составляет 56 км. Значит, при переходе от ПО к 166 км абсолютная концентрация гелия упадет в е раз. Но концентрация N2 в том же интервале высот успеет упасть 7 раз по е раз, так как подъем на каждые 8 км будет означать для [N2] уменьшение в 2,7 раза. Таким образом, концентрация гелия относительно N2 возрастет со 110 до 166 км в е6≈400 раз! Вот что такое независимый закон распределения частиц, или так называемое диффузионное разделение.

Обратим внимание еще на одно обстоятельство в формуле (2). В числителе там стоит температура. Значит, чем выше Т, тем больше Н. И соответственно тем медленнее (в масштабе высот) происходит падение концентрации, а значит, и диффузионное разделение легких и тяжелых газов. Чем температура ниже, тем сильнее выражены все эффекты.

До каких же высот будет справедлива формула (1)? До тех высот, где частицы атмосферы еще испытывают достаточно соударений, чтобы обмениваться кинетической энергией. Область атмосферы, где это уже не так, называется экзосферой. Там на смену уравнениям гидростатики, одним из следствий которых является формула (1), приходят уравнения гидродинамики, учитывающие убегание легких атомов водорода и гелия из земной атмосферы. Гетеросфера на высотах, больших 1000 км, переходит в экзосферу, однако переход этот, конечно, не имеет четкой границы и зависит от многих геофизических факторов.

Мы знаем теперь, как меняется с высотой температура атмосферы- один из основных ее параметров. Другим таким параметром является плотность атмосферы, обычно обозначаемая Q, т. е. масса газа, заключенного в единичном объеме (обычно в одном кубическом сантиметре). Поведение плотности с высотой гораздо проще, чем поведение температуры. Если последняя возрастает, убывает или остается постоянной в зависимости от области высот, или "сферы", то первая неуклонно уменьшается с ростом высоты. Скорость уменьшения определяется все той же высотой однородной атмосферы Н. У поверхности Земли Н равна 7-8 км и выше меняется в соответствии с описанным ранее изменением температуры. На высоте 100 км величина g уже примерно в миллион раз меньше, чем в приземном воздухе. В термосфере падение плотности с высотой замедляется, так как из-за роста температуры и уменьшения молекулярного веса газа М растет Н. На высоте 300 км величина Н уже составляет 50 - 60 км. Соответственно плотность на этой высоте равна примерно 10-10величины q у поверхности Земли.

На этом мы заканчиваем пока нашу экскурсию по "небесным сферам". В следующей главе мы вернемся к делению на сферы по признаку распределения заряженных частиц, а в главе б подробнее расскажем о понятии "эксайтсфера".

Сейчас нам надо обратиться к области рассмотренной нами гетеросферы и поговорить об изменении нейтрального состава, поскольку это очень нужно для всех дальнейших бесед. А главным в проблеме нейтрального состава является соотношение атомы - молекулы.

Атомы - молекулы

Состав гомосферы хорошо известен. Это - состав приземного воздуха. Отличие может быть лишь в небольших примесях - малых составляющих, таких, как О3, NO, N, Н20. С основными же составляющими все ясно: 78% молекулярного азота, 21% молекулярного кислорода и около 1 % аргона. Остальное как раз и есть малые составляющие, которые в сумме дают меньше 0,1% общего количества частиц.

Эта картина остается на удивление неизменной, пока мы движемся по атмосфере вверх примерно до 100 км. Здесь в число основных составляющих начинает активно вторгаться атомный кислород. Откуда он взялся в гомосфере? Конечно, из молекул O2. Ведь чем выше мы поднимаемся, тем сильнее действует на окружающие молекулы кислорода солнечное ультрафиолетовое излучение, способное диссоциировать молекулу O2, разрушить ее на два атома. Из-за этого-то процесса диссоциации и появляются начиная с высот 80 - 90 км в заметном количестве атомы О. (О том, почему этого же не происходит с молекулами N2, мы поговорим в главе 6.) На высоте турбопаузы концентрация атомов кислорода может составлять 10-20% концентрации O2.