Популярная информатика - страница 10
До сих пор мы рассматривали подходы, связанные с количественным аспектом понятия информации без учета смысловой стороны информации. Эти подходы позволили привлечь к изучению информации точные математические методы. В результате были созданы всевозможные кибернетические устройства (понятие информации является центральным в кибернетике), вычислительные машины и пр. Все это стало возможным благодаря достижениям теории информации. Человек научился ее преобразовывать, кодировать и передавать на огромные расстояния с непостижимой точностью.
Классическая теория информации Шеннона, значительно дополненная и обогащенная новыми подходами, все же не может охватить всего многообразия понятия информации и, в первую очередь, ее содержательного аспекта. Теория информации К. Шеннона также не занимается определением ценности информации. Количество информации ее интересует лишь с точки зрения возможности передачи данных сообщении оптимальным образом.
В нашей стране и за рубежом ведутся интенсивные и серьезные исследования в области машинного перевода. Однако, если перевод технических текстов уже стал на сегодняшний день реальностью, то с переводом художественной литературы, несравненно более богатой смысловыми оттенками, подтекстом, образными выражениями, компьютеры справляются пока гораздо хуже.
Попытки оценить не только количественную, но и содержательную сторону информации дали толчок к развитию семантической (смысловой) теории информации. Исследования в этой области теснее всего связаны с семиотикой — теорией знаковых систем. Одним из важнейших свойств информации, которое мы можем наблюдать, является ее неотделимость от носителя: во всех случаях, когда мы сталкиваемся с любыми сообщениями, эти сообщения выражены некоторыми знаками, словами, языками Семиотика исследует знаки как особый вид носителей информации. При этом знаком является условное изображение элемента сообщения, словом — совокупность знаков, имеющих смысловое значение, языком — словарь и правила пользования им. Таким образом, рассуждая о количестве, содержании и ценности информации, содержащейся в сообщении, можно исходить из возможностей соответствующего анализа знаковых структур.
В качестве знаковых систем используются естественные и искусственные языки, в том числе информационные и языки программирования, различные системы сигнализации, логические, математические и химические символы. Они служат средством обмена информацией между высокоорганизованными системами (способными к обучению и самоорганизации). Примером могут быть живые организмы, машины с определенными свойствами.
Рассматривая знаковые системы, выделяют три основных аспекта их изучения: синтактику, семантику и прагматику.
Синтактика изучает синтаксис знаковых структур, т. е. способы сочетаний знаков, правила образования этих сочетаний и их преобразований безотносительно к их значениям. Отметим в связи с этим, что рассматриваемые ранее способы определения количества информации можно отнести к синтаксическим способам.
Семантика изучает знаковые системы как средства выражения смысла, определенного содержания, т. е. правила интерпретации знаков и их сочетаний, смысловую сторону языка.
Прагматика рассматривает соотношение между знаковыми системами и их пользователями, или приемниками-интерпретаторами сообщений. Иными словами, к прагматике относится изучение практической полезности знаков, слов и, следовательно, сообщений, т. е. потребительской стороны языка.
Основная идея семантической концепции информации заключается в возможности измерения содержания (предметного значения) суждений. Но содержание всегда связано с формой, поэтому синтаксические и семантические свойства информации взаимосвязаны, хотя и различны. Получается, что содержание все-таки можно измерить через форму, т. е. семантические свойства информации выразить через синтаксические. Поэтому и исследования семантики базировались на понятии информации как уменьшении или устранении неопределенности, с которым мы уже знакомы.
Сразу же заметим, что методы точного количественного определения смыслового содержания информации в настоящее время еще не разработаны, поэтому мы ограничимся только кратким описанием подходов к решению этой проблемы.