Прикладные аспекты аварийных выбросов в атмосферу - страница 11
M>2 i=M>1 i+Q>0C>i0Δt + ESC>ieΔt,
M>2V>2 = M>1V>1 + g(ρ>e — ρ)νΔt,
P = P>e,
M>2Ξ>2 = M>1 Ξ>1 + Q>0q>TΔt + ESΞ>eΔt + ΔQ>ФП + W>jq>xΔt — HΔt где:
M, M>i — масса вещества выброса и масса i-ой примеси в нем,
Q>0 — расходная функция формирующегося выброса,
С>i — массовая концентрация i — ой примеси, С>i =М>i/М,
Ξ, Ξ>е — полные энергии единицы массы вещества выброса и окружающей среды,
р, v,V,S — плотность выброса, его объем, скорость его движения и площадь вовлечения Е в него окружающей среды,
g — ускорение земного притяжения,
q>T — теплотворная способность топлива,
Р — давление газа или пара,
W>i— скорость образования i — ой примеси в результате химических реакций с теплотой образования q>x в объеме выброса,
ΔQ>ФП — теплота фазовых переходов (парообразования или конденсации для жидкой испаряющейся части выброса),
Н — потери энергии выброса (излучение, контакт с подстилающей поверхностью, с выпадающей примесью и т. п.).
Индексы «1» и «2» относятся к соответствующим моментам времени t>2 = t>1 +Δt, индексы "0" и "е" относятся к параметрам истечения и параметрам окружающей среды.
При рассмотрении струйного течения конечноразностные уравнения записываются относительно поточных характеристик: расхода вещества и примеси, потоков количества движения и энергии.
Полученные нами [41, 43–46, 73] конечно разностные уравнения при устремлении временного интервала Δt к нулю преобразуются в дифференциальные. Их решение при задании начальных условий, параметров окружающей среды и характеристик объекта (геометрических и термодинамических) позволяют решать задачу нахождения геометрических, динамических, тепловых и концентрационных характеристик турбулентного объема (выброса), движущегося в произвольной окружающей среде.
1.5. Определяющие параметры физико-математических моделей
Исследованиям физических процессов, описывающих возникновение и эволюцию выбросов загрязняющих и токсичных веществ в атмосфере, посвящено большое количество работ. Получаемые результаты на различных этапах по отдельным вопросам или по проблеме в целом обобщались в монографиях и книгах, а также периодических изданиях. Основная часть работ по тематике твердофазных выбросов посвящена фракционированию и образованию частиц при ядерных и химических взрывах [48, 49, 50–61], физическим характеристикам отдельных частиц от мощных воздушных взрывов, выпадению частиц из взрывного облака. Однако взрывной разлет твердой фазы взрыва в ветровом потоке не привлекал внимания исследователей.
Подробно разлет частиц при взрывах разных веществ и в разных сосудах в условиях спокойной атмосферы рассмотрен в работе [77]. Анализируя данные работ, рассматривающих возникновение и движение в атмосфере твердофазных частиц, можно сделать вывод о наиболее важных параметрах подобных задач. Ими являются энергетические свойства ВВ и механические свойства подстилающей поверхности. В работе [73] рассмотрено движение частиц после взрыва в ветровом потоке и сделан вывод о необходимости в дополнение к вышеназванным параметрам еще учета метеорологических параметров в месте проведения работ. Только при этом условии можно ожидать получения правильной расчетной информации о динамических и геометрических характеристиках твердой фазы взрыва и о характеристиках плотности ее выпадения на поверхность земли.
Обобщая данные о физических процессах возникновения и движения в атмосфере частиц, можно сделать вывод, что определяющими параметрами при создании физико-математических моделей твердофазных кратковременных выбросов являются:
— массовые, энергетические и термодинамические характеристики ВВ, участвующих в процессе аварии;
— массовые и геометрические характеристики аварийного объекта или его взорвавшейся части;
— прочностные и массовые характеристики подстилающей поверхности (грунта);
— метеорологические данные;
— временные, геометрические и конструкционные особенности освобождения энергии и рабочего тела (сценарий и схема выброса, приподнятость над поверхностью земли и т. п.).
Что касается физических процессов возникновения и движения в атмосфере газообразных выбросов, то таких исследований в настоящее время достаточно много. Основная их часть проведена в лабораторных условиях.