Приключения математика - страница 8

стр.

Каким образом ребенок приобретает привычки и интересы, предопределяющие его будущность — вопрос малоизученный. Одно возможное объяснение — «плагиат», непостижимая способность ребенка к подражанию, копированию внешних впечатлений, к примеру, улыбки матери. Другое объяснение я усматриваю в его врожденном любопытстве. Как иначе объяснить то, что мы сами по собственной инициативе стремимся обогатить свой опыт новыми ощущениями, вместо того чтобы просто реагировать на раздражители?

Склонности, вероятно, являются частью унаследованной системы связей в мозге, генетической особенностью, которая, может быть, даже не зависит от физического расположения нейронов. Ведь очевидно, что происхождение головных болей связано с тем, насколько свободно кровь циркулирует в мозге, что, в свою очередь, зависит от того, расширены или сужены кровеносные сосуды. Возможно, важна именно «водопроводная система», а не расположение нейронов, которое обычно ассоциируется с местом протекания мыслительного процесса.

Другим определяющим фактором может быть случайность начального успеха или неудачи в новом поиске. Я думаю, что и качество памяти развивается подобным образом — в результате случайностей, которые имели место в начале, или беспорядочных внешних воздействий, а, быть может, благодаря удачному сочетанию первого со вторым.

Взять, к примеру, талант шахматиста. Хосе Капабланка обучился игре в шахматы в шесть лет, наблюдая за игрой отца и дяди. Поэтому его способности к шахматной игре развивались без всякого приложения к тому усилий, с той же естественностью, с какой ребенок учиться говорить, и которая так не свойственна взрослым в их начинаниях. У многих других знаменитых шахматистов первый интерес к игре также возник при наблюдении за игрой их родственников. Когда же они сами попробовали сыграть и с первого же раза выиграли партию, возможно, совершенно случайно, в них утвердилось желание продолжить это занятие. Ведь, как известно, нет лучшего стимула, чем успех, особенно в юности.

Меня игре в шахматы обучил отец. У него была брошюра по игре в шахматы, и он часто разбирал со мной наиболее известные из описанных в ней партий. Меня приводил в восхищение ход коня, в особенности, тот оригинальный способ, каким конь мог угрожать сразу двум фигурам соперника. Хотя это была всего лишь простая хитрость, я находил ее особенно замечательной и с тех пор полюбил эту игру.

Нельзя ли подобным же образом объяснить талант математика? Ребенок, скажем, делает успехи в арифметике; возможно, это лишь чистое везение. Однако они побуждают его идти дальше, накапливая все больше опыта и тем самым расширяя границы своей памяти.

Я заинтересовался математикой в довольно раннем возрасте. В библиотеке отца имелась замечательная серия книг на немецком языке под названием «Reklam». В нее входила «Алгебра» Эйлера. Я часто листал ее страницы, и книга эта внушала мне чувство некой таинственности. Все символы казались мне, десятилетнему мальчишке, магическими знаками, и я очень хотел знать, смогу ли когда-нибудь понять их. Вполне возможно, что это способствовало дальнейшему развитию моей любознательности. Например, я сам научился решать квадратные уравнения. Я отдавался этому занятию с невероятной сосредоточенностью и каким-то болезненным, не вполне осознанным напряжением. То, что я делал, было равносильно мысленному возведению в квадрат какого-либо числа без бумаги и карандаша.

В старших классах очередным стимулом для меня стала задача о существовании совершенных нечетных чисел. Как известно, целое число называют совершенным, если оно равно сумме всех своих делителей, включая единицу, кроме делителя, равного данному числу. Так, числа 6 = 1 + 2 + 3 и 28 = 2 + 4 + 7 + 14 являются совершенными. Вы спросите: бывают ли нечетные совершенные числа? К сожалению, вопрос об их существовании остается открытым до сих пор.

Школьные уроки математики меня по большей части не удовлетворяли. Я считал их скучными, и у меня совсем не лежала душа к заучиванию определенных формальных операций. Поэтому мне больше нравилось изучать математику самостоятельно.