Путевые заметки рассеянного магистра - страница 16

стр.

Таня разложила на полу большой чертёж с изображением правильного пятиугольника. Внутри пятиугольника она провела пять диагоналей, которые образовали пятиконечную звезду с вершинами в точках A, B, C, D и E.

Склонившись над чертежом, ребята пристально вглядывались в фигуру.

— Ой, — закричал Нулик, — что я заметил! Внутри звезды ещё пятиугольник, а в нём ещё звезда. И так без конца…

— А если б ты был ещё внимательней, — сказала Таня, — то заметил бы, что диагонали большого пятиугольника делят угол при его вершинах на три угла, каждый из которых равен 36 градусам.

— Выходит, угол при вершине пятиугольника равен 108 градусам, — подсчитал Нулик.

— А сумма пяти углов звезды — 180, — сообразил Сева. — Совсем как у треугольника. Действительно замечательная фигура!

— Это что! — возразила Таня. — Самое замечательное свойство звезды впереди. Рассмотрим какую-нибудь из её сторон, то есть диагональ пятиугольника, — вот хотя бы диагональ AD. Диагональ эту в точке m пересекает другая, EB, которая делит AD на две части: меньшую Am и бо́льшую mD.

Нулик вопросительно вскинул брови: — Ну и что?

— А то, что меньший отрезок Am так относится к большему mD, как этот больший сам относится ко всей стороне AD.

Am: mD = mD: AD.

— Но отсюда вытекает, что mD>2=Am*AD, — подсчитал Сева, — то есть больший отрезок стороны есть среднее геометрическое между всей стороной и её меньшей частью.

— Очень хорошо, — одобрила Таня. — Это и называется разделить сторону AD в среднем и крайнем отношениях. Сева хлопнул себя по лбу:

— Так вот о чём говорила Единичка! Только при чём здесь всё-таки золото?

— А при том, что такое деление Пифагор и его последователи называли золотым делением или золотым сечением.

— Такую пропорцию называли ещё божественной, — добавил Олег.

— Как раз об этом я и хотела сказать. Древние широко использовали божественную пропорцию в искусстве. Они проверяли ею красоту человеческого тела и признавали его идеальным лишь тогда, когда соотношения отдельных его частей подчинялись закону золотого сечения.

Таня извлекла из портфеля фотографию, испещрённую горизонтальными линиями.

— Вот статуя Аполлона Бельведерского, который, как известно, считается идеалом человеческой красоты. Все пропорции этой фигуры, все её соотношения, строго соответствуют золотому сечению: верхняя и нижняя части торса, ноги, руки…

— Чего нельзя сказать о Магистре, — сокрушённо вздохнул Сева. — Единичке очень не понравились его пропорции. Видно, далеко ему до Аполлона…

— Да и тебе не близко, — сказала Таня, критически оглядев Севу.

— Золотому сечению соответствовали и пропорции греческих зданий, — торопливо сказал Олег, чтобы прекратить неприятную пикировку. — Оттого они и до сих пор остаются для нас образцом красоты и гармонии.

— И все это придумал Пифагор, — заключил Нулик. — Силён!

— Пифагор, конечно, силён, — подтвердил я, — но справедливости ради надо сказать, что золотое сечение было известно ещё в Древнем Вавилоне. Да и вообще правило это выдумано не человеком, а самой природой. Пифагор только подметил его. И здесь время вспомнить о засушенной веточке, которую так расхваливала Единичка.

— У-у-у, — протянул Нулик, — а я думал, она это просто так…

— Пора бы уже заметить, что Единичка ничего не говорит просто так. Посмотрите-ка на эту веточку. Нет, это не Единичкина, а моя. Но взгляните, как расположены на ней листья. Попробуйте измерить расстояния между ними.

Сева порылся в кармане (а там чего-чего только нет!), извлёк сантиметр и принялся за измерение.

— Между первым листом и третьим, считая снизу, — 20 миллиметров, между первым и вторым — 12,5.

— Неточно, — сказал Нулик, ревниво следивший за операцией. — 12,36 миллиметра, а не 12,5.

Я похвалил Нулика за педантичность и предложил установить, в какой пропорции второй лист делит расстояние между первым и третьим.

— Минуточку! — Сева вынул карандаш и блокнот. — 20 минус 12,36 — это 7,64. Таково расстояние между вторым и третьим листьями. Значит, 7,64 так относится к 12,36, как 12,36 относится к 20.

7,64:12,36 = 12,36:20.

— Но это и есть золотая пропорция! — подытожил я. — Ведь отношение верхнего деления к нижнему равно здесь отношению нижнего деления к общему расстоянию между крайними листьями. Как видите, природа — отличный художник. У неё верный глазомер и тонкое чувство гармонии.