Пути в незнаемое - страница 18

стр.

В обычных атомных установках тепло из активной зоны реактора переносит вода, порой — легкоплавкий металл. Температуру таких теплоносителей выше пятисот градусов не поднимают, нельзя. А в высокотемпературных системах вместо этих веществ циркулирует гелий. Значит, есть возможность и теоретически и практически поднять температуру теплоносителя до тысячи, а иногда даже до тысячи двухсот градусов. Высокотемпературные реакторы поднимают тепловой КПД атомной станции до пятидесяти процентов — величины, абсолютно недостижимой для обычных АЭС и ТЭС.

Но это только начало. Суть дела в том, что высокотемпературные реакторы и работающие на их основе атомные электростанции превратятся в центры, вокруг которых станут группироваться энергоемкие производства, требующие и электричества и тепла. Именно здесь целесообразно разместить заводы, синтезирующие из угля жидкие и газообразные углеводороды, разлагающие воду на водород и кислород с помощью угля. Здесь встретится с атомной энергией плазменная технология.

Реактор нагреет теплоноситель до температуры, близкой к тысяче градусов, а остальные градусы, нужные, чтобы пошло разложение воды, даст плазмотрон, — например, радиочастотный. А уж выработанным водородом мы градусах при восьмистах получим из руды чистейшее железо, без всяких примесей вроде фосфора, обычно попадающего в металл из кокса. Никель, кобальт, вольфрам, молибден — множество тугоплавких и крайне нужных поэтому металлов будут выходить из водородной плазмы в виде порошка. А порошок!.. Из порошка (который сейчас получают по сложной и крайне энергоемкой, многоступенчатой технологии — а потому получают мало), как известно, не составляет труда сделать самую сложную деталь совершенно без отходов, просто спекая порошок в печи. То есть с приходом водорода иным становится и машиностроение!

Вполне возможно, что подобные фабрики водорода станут располагать где-нибудь на островах в морях и океанах. Сырья — воды — сколько угодно, никаких трудностей с охлаждением, а побочным ценным продуктом станут растворенные в морской воде вещества. Не окажется ли в этом случае рентабельной добыча полезных ископаемых из морской воды? Туда, на остров, — ядерное горючее, запасные части, товары для обслуживающего персонала, а обратно — чистое горючее и металлы, соли, кислоты… Найдется работа для танкеров, которые уже сейчас во множестве стоят на приколе, — памятники несбывшимся надеждам на бездонность земных недр. А выработанный кислород поступит в атмосферу, навсегда ликвидировав угрозу кислородного голода планеты. Да и с углекислым газом, этим опасным плодом промышленной деятельности, удастся покончить.

Да и надо ли вообще ждать, пока высокотемпературные реакторы станут наряду с низкотемпературными (более дешевыми, а потому прочно стоящими на своих позициях и в будущем) главным элементом промышленно-энергетических комплексов? Почему бы не начать вырабатывать водород уже сегодня, прибегнув к тривиальному электролизу воды? Слов нет, КПД процесса низок, — но ведь и электроэнергию в провалах графика некуда девать. Предлагается поэтому строить не только ГАЭС, сооружение которых займет годы, но и электролизные цеха, благо все элементы такой системы, вплоть до мощных электролизеров, хорошо известны. А когда наступит пик нагрузки, в газовых турбинах (именно они — наиболее перспективные двигатели для пиковых станций) сожгут водород, а не жидкое углеводородное топливо. Со многих точек зрения такой проект выглядит выгодным, в том числе и потому, что удастся с лучшим счетом вести игру против времени, постоянно усугубляющего наши топливные трудности, поскольку заводы работают как прежде, а транспорт возит созданное как всегда.

Чем дальше, тем плотнее мы с вами влезаем в атомную технологию, — что ж, хорошо, надо же чем-то достойным закончить наш путь по проблемам энергетики. Ведь именно на АЭС возлагаются самые большие надежды, хотя в масштабе планеты эти станции занимают пока очень скромное место, покрывая лишь около двух процентов общих энергетических потребностей. В самом начале их строительства казалось, что они быстро станут счастливыми соперниками и даже победителями всех остальных. Потом встретились неожиданные трудности, темпы атомизации отошли от первоначальных наметок. В 1972 году вошло в строй лишь семнадцать тысяч мегаватт — втрое меньше официальных прогнозов. Все обостряющиеся требования к радиационной безопасности увеличили сроки строительства с пяти лет до девяти и даже одиннадцати. Сыграло свою роль общее ухудшение экономической конъюнктуры на капиталистическом рынке энергетики (кое-где энергоснабжающие компании оказались с неиспользованными резервами мощности, достигающими тридцати процентов!). Повлияли помехи, чинимые всякого рода «борцами против атомной энергетики», за спиной которых стоят владельцы обычных ТЭС и нефтяные монополии, опасающиеся потери доходов. Даже перед лицом энергетического кризиса капитализм оказывается не в состоянии развивать свою энергетику так, как этого требует наука. Все диктуется соображениями прибыльности… Конечно, нельзя сбрасывать со счетов и объективные трудности: скажем, проблему захоронения радиоактивных шлаков — отходов ядерной энергетики. Опасно и то, что расщепляющиеся материалы чем дальше, тем с большей вероятностью могут попасть в руки безответственных экстремистов, которые смогут сделать атомную бомбу буквально в домашних условиях. Однако из этого можно сделать и иные выводы: не прекращать развитие ядерной энергетики, а принимать усиленные меры безопасности.