Рассказы о математиках - страница 26

стр.

Память у Лейбница была неровная. Некоторые вещи он запоминал очень хорошо, а некоторые плохо, причем запоминал отлично то, что давалось с большим трудом, и хуже то, что усваивалось совсем легко.

От природы ученый был наделен вспыльчивым, но отходчивым характером. Он зла не помнил и долго сердиться не мог. С детства был близорук и не отличался, как сам говорил, большим воображением. Обожал детей, но семьей не обзавелся: всю свою жизнь прожил холостым. Однажды в пятидесятилетием возрасте он сделал предложение одной даме, но та попросила его немного подождать. За это время Лейбниц раздумал жениться и должен был признаться: «До сих пор я воображал, что жениться всегда успею, а теперь, оказывается, опоздал».

Лейбниц охотно путешествовал и любил непринужденные разговоры с людьми разных профессий.

Путешествуя по Италии, Лейбниц отправился из Венеции на Мезолу, остров в Адриатическом море. Из пассажиров в лодке он был один. Поднялась страшная буря, очень напугавшая матросов. Рулевой решил, что пассажир — безбожник и что его присутствие в лодке — единственная причина бури. Он сообщил свое предположение матросам, которые немедленно с ним согласились. Думая, что немец не понимает по-итальянски, матросы громко рассуждали о том, чтобы немедленно бросить его в воду. Но Лейбниц, знавший итальянский язык, все понял. Как быть? Не подавая виду, он спокойно вынул из своего кармана четки, которыми запасся заранее, зная фанатизм венецианцев, и, шепча молитву, стал усердно перебирать их.

Эффект сказался быстро. Матросы перестали считать Лейбница безбожником. К счастью, и море стало заметно успокаиваться…

Лейбниц наряду с Ньютоном, но независимо от него, завершил открытие дифференциального и интегрального исчисления, составляющего самую первую основу всей современной высшей математики. Лейбницу, например, принадлежит более обстоятельное, чем у Ньютона, решение некоторых вопросов высшей математики и более четкая символика и терминология, сохранившаяся до настоящего времени. В частности, названия «дифференциал» и «интеграл» были впервые введены Лейбницем.

В расцвете творческого гения ученый изобрел счетную машину (арифмометр) и механизм для приближенного интегрирования.

В своем учении «о всеобщей характеристике» Лейбниц заложил первые кирпичи современной математической логики, которая в настоящее время развилась в стройную, далеко идущую науку.

Христиан Гюйгенс (1629–1695)

Христиан Гюйгенс — выдающийся нидерландский математик и физик — родился в Гааге в семье всесторонне образованного писателя и политического деятеля Константина Гюйгенса. Уже в раннем детстве Христиан обнаруживает способности, служившие предметом удивления и восхищения всех, кто с ним близко соприкасался.

В восемь лет Христиан усвоил четыре действия арифметики, хорошо изучил латинский язык и свободное время посвящал пению. Когда Христиану исполнилось десять лет, он увлекся изучением латинского стихосложения и игрой на скрипке. Одиннадцатилетним подростком он свободно играл на лютне. К двенадцатому году своей жизни он твердо усвоил законы логики и свободно применял их в своих рассуждениях и доказательствах.

Об успехах Христиана в то время можно судить по письмам учителя Генриха Бруно к отцу Гюйгенса. Так, в одном из писем он сообщает о своем четырнадцатилетием воспитаннике: «Я признаюсь, что Христиана надо назвать чудом среди мальчиков… Он развертывает свои способности в области механики и конструкций, делает машины удивительные, но вряд ли нужные».

Христиан Гюйгенс

Из приведенной выдержки видно, что Бруно не слишком поощрял занятия Христиана по изготовлению машин, тем не менее в этом направлении Христиан сделал очень многое, в частности сконструировал для себя токарный станок, которым впоследствии долго пользовался.

С 14 до 16 лет Христиан с увлечением занимался математикой по программе и учебнику, составленным специально для него профессором Франциском Схоутеном, автором трактата о конических сечениях и нескольких книг «Математические упражнения».

В результате этих занятий шестнадцатилетний Христиан хорошо овладел «Арифметикой» Диофанта и «Геометрией» Декарта. Познакомился со всеми оригинальными задачами на геометрические места Паппа Александрийского и с задачами на отыскание максимумов и минимумов по работам Пьера Ферма.