Тени разума. В поисках науки о сознании - страница 20

стр.

. Такова природа хаотических систем. На практике бесполезно пытаться с помощью вычислений предсказать реальное конечное состояние системы. Тем не менее, моделирование типичного конечного состояния вполне возможно. Предсказанная погода может и не совпасть с реальной, но она абсолютно правдоподобна как погода вообще! Точно так же и предсказанный результат столкновений бильярдных шаров абсолютно приемлем как возможный исход, даже несмотря на то, что на самом деле шары могут повести себя совершенно не так, как предсказано вычислением, — однако и при этом их поведение остается в равной степени приемлемым. Упомянем еще об одном обстоятельстве, которое подчеркивает идеально вычислительную природу таких операций: если запустить процесс компьютерного моделирования вторично, задав те же входные данные, что и ранее, то результат моделирования будет точно таким же, как и в первый раз! (Здесь предполагается, что сам компьютер не ошибается; впрочем, надо признать, что  современные компьютеры и в самом деле крайне редко совершают при вычислениях реальные ошибки.)

Возвращаясь к искусственному интеллекту, отметим, что никто пока и не пытается воспроизвести поведение какого-то конкретного индивидуума; нас бы прекрасно устроила модель индивидуума вообще! В этом контексте моя позиция вовсе не представляется такой уж неразумной: хаотические системы следует безусловно относить к категории систем, которые мы называем «вычислительными». Компьютерная модель такой системы и в самом деле выглядела бы как абсолютно приемлемый «типичный случай», даже и не совпадая при этом ни с каким «реальным случаем». Если внешние проявления человеческого разума суть результаты некоей хаотической динамической эволюции (эволюции вычислительной в том смысле, о котором мы только что говорили), то это вполне согласуется с точками зрения A и B, но никак не C.

Время от времени выдвигаются предположения, что, возможно, именно феномен хаоса — если, конечно, он действительно имеет место в деятельности мозга как физической сущности — позволяет человеческому мозгу симулировать поведение, якобы отличное от вычислительно-детерминированного функционирования машины Тьюринга, хотя, как подчеркивалось выше, формально его активность является целиком и полностью вычислительной. К этому вопросу мне еще придется вернуться несколько позднее (см. §3.22). Пока же достаточно уяснить лишь то, что хаотические системы относятся к категории систем, называемых мною «вычислительными» или «алгоритмическими». Вопрос же о том, можно ли смоделировать какую-нибудь из таких систем на практике, не входит в круг принципиальных вопросов, которые мы здесь рассматриваем.

1.8. Аналоговые вычисления

До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным цифровым компьютерам или, точнее, к их теоретическим предшественникам — машинам Тьюринга. Существуют и другие разновидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов между дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из таких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно перемножить или разделить. Существует много различных разновидностей аналоговых вычислительных устройств, в которых могут применяться и другие типы физических параметров — такие, например, как время, масса или электрический потенциал.

В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифровые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к системе, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной процедурой является