Тени разума. В поисках науки о сознании - страница 40

стр.

Почему же в таком случае я решил рассмотреть вопрос сознания прежде всего в математическом контексте? Причина заключается в том, что только в математических рамках мы можем рассчитывать на возможность хоть сколько-нибудь строгой демонстрации непременной невычислимости, по крайней мере, некоторой части сознательной деятельности. Вопрос вычислимости по самой своей природе является, безусловно, математическим. Нельзя ожидать, что нам удастся дать хоть какое-то «доказательство» невычислимости того или иного процесса, не обратившись при этом к математике. Я хочу убедить читателя в том, что все, что мы делаем нашим мозгом или разумом в процессе понимания математического суждения, существенно отличается от того, чего мы можем добиться от какого угодно компьютера; если мне это удастся, то читателю будет намного легче оценить роль невычислительных процессов в сознательном мышлении вообще.

А разве не очевидно, возразят мне, что восприятие того же красного цвета никак не может быть вызвано просто выполнением какого бы то ни было вычисления. К чему вообще утруждать себя какими-то ненужными математическими демонстрациями, когда и без того совершенно ясно, что qualia — т.е. субъективные ощущения — никак не связаны с вычислениями? Один из ответов заключается в том, что такое доказательство от «очевидного» (как бы благожелательно я ни относился к подобному способу доказательства) применимо только к пассивным аспектам сознания. Как и китайскую комнату Серла, его можно представить в качестве аргумента против точки зрения A, а вот между C и B разницы для него не существует.

Более того, мне представляется крайне уместным побить функционалистов вместе с их вычислительной моделью (т.е. точкой зрения A), так сказать, на их собственном поле; ведь это именно функционалисты настаивают на том, что все qualia на самом деле должны быть так или иначе обусловлены банальным выполнением соответствующих вычислений, невзирая на то, сколь невероятной такая картина может показаться на первый взгляд. Ибо, аргументируют они, что же еще можем мы эффективно делать своим мозгом, как не выполнять те или иные вычисления? Для чего вообще нужен мозг, если не в качестве своеобразной системы управления вычислениями — да, чрезвычайно сложными, но все же вычислениями? Какие бы «ощущения осознания» ни пробуждались в нас в результате той или иной функциональной активности мозга, эти ощущения, согласно функционалистской модели, непременно являются результатом некоторой вычислительной процедуры. Функционалисты любят упрекать тех, кто не признает за вычислительной моделью способности объяснить любые проявления активности мозга, включая и сознание, в склонности к мистицизму. (Надо понимать так, что единственной альтернативой точки зрения A является D.) Во второй части книги я намерен привести несколько частных предположений относительно того, что еще может вполне эффективно делать мозг, допускающий научное описание. Не стану отрицать, некоторые «конструктивные» моменты моего доказательства являются чисто умозрительными. И все же я полагаю, что мои доводы в пользу невычислимости хотя бы некоторых мыслительных процессов весьма убедительны; а для того, чтобы эта убедительность переросла в неотразимость, их следует применить к математическому мышлению.

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получении осознанных же математических решений в нашем мозге действительно происходит что-то невычислимое. Каким образом это поможет нам понять причины ограниченных способностей роботов, которые, как я упоминал ранее, значительно хуже справляются с элементарными, «бытовыми», действиями, нежели со сложными задачами, для выполнения которых требуются высококвалифицированные специалисты-люди? На первый взгляд, создается впечатление, что мои выводы в корне противоположны тем, к которым придет всякий здравомыслящий человек, исходя из известных ограничений искусственного интеллекта — по крайней мере, сегодняшних ограничений. Ибо многим почему-то кажется, что я утверждаю, будто невычислимое поведение должно быть связано скорее с пониманием крайне сложных областей математики, а никак не с обыденным, бытовым поведением. Это не так. Я утверждаю лишь, что