Тени разума. В поисках науки о сознании - страница 45
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычислительным путем. Даже если визуализация действительно осуществляется посредством какой-то внутренней аналоговой системы, что мешает нам предположить, что должна существовать, по крайней мере, возможность смоделировать поведение такого аналогового устройства?
Дело в том, что «предметом» рассматриваемой выше «визуализации» является «визуальное» в буквальном смысле этого слова, т.е. мысленные образы, соответствующие, как нам представляется, сигналам, поступающим в мозг от глаз. В общем же случае мысленные образы вовсе не обязательно носят такой буквально «визуальный» характер — например, те, что возникают, когда мы понимаем смысл какого-то абстрактного слова или припоминаем музыкальную фразу. Согласитесь, что мысленные образы человека, слепого от рождения, вряд ли могут иметь прямое отношение к сигналам, которые его мозг получает от глаз. Иными словами, под «визуализацией» мы будем в дальнейшем подразумевать скорее процессы, связанные с «осознанием» вообще, нежели те, что имеют непосредственное отношение к системе органов зрения. Честно говоря, мне не известен ни один довод, непосредственно указывающий на вычислительную (или какую-либо иную) природу нашей способности к визуализации именно в буквальном смысле этого слова. Моя же убежденность в том, что процессы «буквальной» визуализации действительно являются невычислимыми, проистекает из явно невычислительного характера других видов осознания. Не совсем понятно, каким образом можно произвести прямое доказательство невычислимости исключительно для геометрической визуализации, однако если бы удалось убедительно доказать невычислимость хотя бы некоторых форм осмысленного осознания, то такое доказательство дало бы, по меньшей мере, серьезные основания полагать, что вид осознания, ответственный за геометрическую визуализацию, также должен иметь невычислительный характер. По-видимому, нет особой необходимости проводить четкую границу между различными проявлениями феномена сознательного понимания.
Переходя от общего к частному, я утверждаю, что наше понимание, например, свойств натуральных чисел (0, 1, 2, 3, 4, …) носит явно невычислительный характер. (Можно даже сказать, что само понятие натурального числа и есть, в некотором смысле, форма негеометрической «визуализации».) В §2.5, воспользовавшись упрощенным вариантом теоремы Гёделя (см. пояснение к возражению Q16), я покажу, что это понимание невозможно описать каким бы то ни было конечным набором правил, а значит, невозможно и воспроизвести с помощью вычислительных методов. Время от времени нас радуют сообщениями о том, что ту или иную компьютерную систему «обучили» «пониманию» концепции натурального числа>{28}. Однако, как мы вскоре увидим, этого просто не может быть. Именно осознание того, что в действительности может означать слово «число», дает нам возможность верно понять заключенную в нем идею. А располагая верным пониманием, мы — по крайней мере, в принципе — можем давать верные ответы на целый ряд вопросов о числах, буде нам таковые зададут, в то время как ни один конечный набор правил этого обеспечить не в состоянии. Имея в своем распоряжении одни только правила при полном отсутствии непосредственного осознания, управляемый компьютером робот (такой, например, как «Deep Thought»; см. §1.15) неизбежно окажется лишен тех способностей, в которых ни один из людей никаких ограничений не испытывает; хотя если снабдить робота достаточно умными правилами поведения, то он, возможно, поразит наше воображение выдающимися интеллектуальными подвигами, многие из которых далеко превзойдут способности обычного человека в каких-то конкретных, достаточно узкоспециальных областях. Возможно даже, что ему удастся на некоторое время одурачить нас, и мы поверим, что и он способен на осознание.
Следует отметить, что всякий раз, как мы получаем действительно эффективную цифровую (или аналоговую) компьютерную модель какой-либо внешней системы, это почти всегда происходит благодаря глубокому пониманию человеком тех или иных основополагающих математических идей. Взять хотя бы цифровую модель геометрического движения твердого тела. Выполняемые при таком моделировании вычисления опираются, главным образом, на открытия великих мыслителей семнадцатого века — таких, например, как французские математики Декарт, Ферма и Дезарг, — которым мы обязаны идеями системы координат и проективной геометрии. Существуют и модели, описывающие движение куска веревки или струны. Как выясняется, геометрические идеи, необходимые для понимания особенностей поведения струны — ее так называемой «заузленности», — весьма сложны и относительно молоды. Большинство фундаментальных открытий в этой области были сделаны только в двадцатом веке. Каждый из нас без особого труда способен экспериментальным путем — т.е. посредством несложных манипуляций руками и приложения некоторого здравого смысла — убедиться в наличии либо отсутствии на замкнутой, но спутанной веревочной петле узлов; вычислительные же алгоритмы для достижения того же результата оказываются на удивление сложными и малоэффективными.