Тени разума. В поисках науки о сознании - страница 53
(n) никогда не завершается. Поскольку выполняемое процедурой А вычисление зависит от двух чисел q и n, его можно обозначить как A(q, n) и записать следующее утверждение:
(H) Если завершается A(q, n), то C>q(n) не завершается.
Рассмотрим частный случай утверждения (H), положив q равным n. Такой шаг может показаться странным, однако он вполне допустим. (Он представляет собой первый этап мощного «диагонального доказательства» — процедуры, открытой в высшей степени оригинальным и влиятельным датско-русско-немецким математиком девятнадцатого века Георгом Кантором; эта процедура лежит в основе рассуждений и Гёделя, и Тьюринга.) При q, равном n, наше утверждение принимает следующий вид:
(I) Если завершается A(n, n), то C>n(n) не завершается.
Отметим, что A(n, n) зависит только от одного числа (n), а не от двух, так что данное вычисление должно принадлежать ряду C>0, C>1, C>2, C>3, C>4, C>5, … (по n), поскольку предполагается, что этот ряд содержит все вычисления, которые можно выполнить над одним натуральным числом n. Обозначив это вычисление через C>k, запишем:
(J)A(n, n) = C>k(n).
Рассмотрим теперь частный случай n = k. (Второй этап диагонального доказательства Кантора.) Из равенства (J) получаем:
(K)A(k, k) = C>k(k),
утверждение же (I) при n = k принимает вид:
(L) Если завершается A(k, k), то C>k(k) не завершается.
Подставляя (K) в (L), находим:
(M) Если завершается C>k(k), то C>k(k) не завершается.
Из этого следует заключить, что вычисление C>k(k) в действительности не завершается. (Ибо, согласно (M), если оно завершается, то оно не завершается!) Невозможно завершить и вычисление A(k, k), поскольку, согласно (K), оно совпадает с C>k(k). То есть наша процедура A оказывается не в состоянии показать, что данное конкретное вычисление C>k(k) не завершается, даже если оно и в самом деле не завершается.
Более того, если нам известно, что процедура А обоснованна, то, значит, нам известно и то, что вычисление C>k(k) не завершается. Иными словами, нам известно нечто, о чем посредством процедуры A мы узнать не могли. Следовательно, сама процедура A с нашим пониманием никак не связана.
В этом месте осторожный читатель, возможно, пожелает перечесть все вышеприведенное доказательство заново, дабы убедиться в том, что он не пропустил какой-нибудь «ловкости рук» с моей стороны. Надо признать, что, на первый взгляд, это доказательство и в самом деле смахивает на фокус, и все же оно полностью допустимо, а при более тщательном изучении лишь выигрывает в убедительности. Мы обнаружили некое вычисление C>k(k), которое, насколько нам известно, не завершается; однако установить этот факт с помощью имеющейся в нашем распоряжении вычислительной процедуры А мы не в состоянии. Это, собственно, и есть теорема Гёделя(—Тьюринга) в необходимом мне виде. Она применима к любой вычислительной процедуре A, предназначенной для установления невозможности завершить вычисление, — коль скоро нам известно, что упомянутая процедура обоснованна. Можно заключить, что для однозначного установления факта незавершаемости вычисления не будет вполне достаточным ни один из заведомо обоснованных наборов вычислительных правил (такой, например, как процедура A), поскольку существуют незавершающиеся вычисления (например, C>k(k)), на которые эти правила не распространяются. Более того, поскольку на основании того, что нам известно о процедуре A и об ее обоснованности, мы действительно можем составить вычисление C>k(k), которое, очевидно, никогда не завершается, мы вправе заключить, что процедуру A никоим образом нельзя считать формализацией процедур, которыми располагают математики для установления факта незавершаемости вычисления, вне зависимости от конкретной природы A. Вывод:
G Для установления математической истины математики не применяют заведомо обоснованные алгоритмы.
Мне представляется, что к такому выводу неизбежно должен прийти всякий логически рассуждающий человек. Однако многие до сих пор предпринимают попытки этот вывод опровергнуть (выдвигая возражения, обобщенные мною под номерами Q1-Q20 в §2.6 и §2.10), и, разумеется, найдется ничуть не меньше желающих оспорить вывод более строгий, суть которого сводится к тому, что мыслительная деятельность непременно оказывается связана с некими феноменами, носящими фундаментально невычислительный характер. Вы, возможно, уже спрашиваете себя, каким же это образом подобные математические рассуждения об абстрактной природе вычислений могут способствовать объяснению принципов функционирования человеческого мозга. Какое такое отношение имеет все вышесказанное к проблеме осмысленного осознания? Дело в том, что, благодаря этим математическим рассуждениям, мы и впрямь можем прояснить для себя некие весьма важные аспекты такого свойства мышления, как