Теория относительности для миллионов - страница 25
Эта прямая линия не есть график реальной поездки. Просто она является мерой пространственновременного расстояния между двумя событиями.
График поездки может быть сложной кривой, поскольку ваша машина ускоряется в начале движения, расположение улиц может сделать невозможной поездку к ресторану по прямой, где-то в пути вы остановитесь при красном свете, и, наконец, вы должны испытать отрицательное ускорение, когда останавливаете машину. Сложный волнистый график реальной поездки в теории относительности называется «мировой линией» поездки. В рассмотренном случае это мировая линия в трехмерном пространстве — времени, или (как его иногда называют) в трехмерном пространстве Минковского.
Так как эта поездка на автомобиле происходила на плоскости, имеющей два измерения, оказалось возможным добавить еще одно измерение — временное и изобразить ее в виде трехмерного графика.
Когда события происходят в трехмерном пространстве, невозможно нарисовать график в четырехмерном пространстве — времени, но математики умеют обращаться с такими графиками, не рисуя их. Попытайтесь представить себе четырехмерного ученого, который умеет чертить четырехмерные графики с такой же легкостью, как обычный ученый чертит двух- и трехмерные графики. Три координаты его графика соответствуют трем измерениям нашего пространства. Четвертая координата — это наше время. Если космический корабль улетает с Земли и приземляется на Марсе, наш воображаемый ученый изобразит мировую линию этого путешествия в виде кривой на своем четырехмерном графике. (Линия будет кривой, так как корабль не может проделать такое путешествие без ускорений.) Пространственно-временной «интервал» между отлетом и приземлением будет изображаться на этом графике прямой линией.
В теории относительности всякий предмет представляет собой четырехмерную структуру, движущуюся вдоль мировой линии в четырехмерном мире пространства — времени. Если какой-либо предмет рассматривается покоящимся по отношению к трем пространственным координатам, он все равно движется во времени. Его мировая линия будет прямой, параллельной временной оси графика. Если предмет совершает равномерное движение в пространстве, его мировая линия по-прежнему будет прямой, но теперь уже непараллельной оси времени. Если предмет движется неравномерно, его мировая линия становится кривой.
Теперь мы можем рассмотреть Лоренц-Фитцджеральдово сокращение специальной теории с новой точки зрения: с точки зрения Минковского, иначе говоря, с точки зрения нашего четырехмерного ученого. Как мы видели, когда два космических корабля проходят один мимо другого, находясь в состоянии относительного движения, наблюдатели на каждом из кораблей обнаруживают некоторые изменения формы другого корабля, а также изменения скорости хода часов на другом корабле. Это происходит по той причине, что пространство и время не являются абсолютными величинами, не зависящими друг от друга. Они похожи, так сказать, на теневые проекции четырехмерных пространственно-временных предметов. Если поставить книгу против источника света и проектировать ее тень на двухмерную стенку, то, поворачивая книгу, можно изменять форму ее тени. В одном положении тень книги представляет собой широкий прямоугольник, в другом — узкий. Книга не меняет своей формы, меняются только ее двухмерные тени.
Подобным образом наблюдатель видит четырехмерную структуру, скажем, космический корабль, в различных трехмерных проекциях в зависимости от того, как он движется по отношению к кораблю. В некоторых случаях проекция занимает больше пространства и меньше времени, в других случаях наоборот. Изменения, которые он наблюдает в пространственных и временных измерениях другого корабля, могут быть объяснены своего рода «поворотом» корабля в пространстве — времени, приводящим к изменению его теневых проекций на пространство и время. Именно это имел в виду Минковский, когда (в 1908 г.) начал знаменитую лекцию на 80-м съезде германского общества натуралистов и физиков. Эта лекция опубликована в книге «Принцип относительности» Альберта Эйнштейна и др. Никакая из популярных книг по теории относительности не будет полной без следующей цитаты из лекции Минковского: