Теория расчета оболочек нефтяных аппаратов - страница 2

стр.


Теории оболочек, как написано выше, условно делят на теорию тонких оболочек и теорию толстых оболочек. Для каждого из типов теорий существует несколько способов построения в зависимости от гипотез. Теория тонких оболочек делится на техническую теорию с введенными гипотезами для решения определенных задач и математическую теорию, занимающуюся обоснованием теории.

Теория толстых оболочек на основе задачи Ламе подробно приведена в работах академиков Ильюшина А.А. [7], Работнова Ю.Н. [9]. В работе член-корреспондента А.И. Лурье [13] приведено решение задачи Ламе на основе пространсвенной теории упругости. В работе Ильюшина [8] приведена пластическая деформация толстой оболочки.

Теория толстых оболочек (т.е. на основе задачи Ламе) не имеет моментного решения и применяется решение из теории тонких оболочек. Расчетный аппарат теории толстых оболочек, построенной по задаче Ламе, но основании его возможностей не является лучшим средством для расчета сосудов высокого давления.

Следует в перспективе перейти на расчет сосудов по технической теории толстых оболочек, имеющей общий подход с теорией тонких оболочек. Техническую теорию толстых оболочек как более точную по сравнению с теорией тонких оболочек, можно распространить к применению на расчет тонкостенных сосудов. То есть выполнить переход на использование одной теории для расчета всех типов сосудов, что упростит работу расчетчиков и проектировщиков.


Теория тонких оболочек существует как техническая теория, направленная на расчеты конструкций, и как математическая теория, занимающаяся теоретически обоснованием.

Из технических теорий можно отметить теорию академика Власова В.З. [1], наиболее маститого российского (советского) специалиста по расчету оболочек. Ему также принадлежит вариант теории ребристых оболочек, под которую можно отнести по конфигурации обечайку с укрепляющими кольцами.

По математической теории тонких оболочек из российских (советских) специалистов можно отметить работы академика Новожилова В.В. [3, 4]. В работе [3] Новожилов писал, что теорию тонких оболочек необходимо рассматривать без отрыва от теории упругости. Из работ иностранных специалистов можно отметить книги иностранного члена академии наук Тимошенко [15] и Лява А. [18].

3 Построения расчётного аппарата вариантов теорий


В теории тонких оболочек из стенки оболочки выделяется кольцевой сегмент. В теории толстых оболочек на основе задачи Ламе, также в начале построения теории из стенки выделяется кольцевой сегмент. Затем построения теории идут по полностью отличающимся путям.

Сегмент выделяется секущими плоскостями, проходящими через ось оболочки. На примере цилиндрической обечайки:



Сегмент в плане представляет собой геометрическую фигуру трапеции с криволинейными основаниями (но не кубический или прямоугольный элемент):



Кольцевой сегмент является твердого тела (элементом твердого тела).


В теории тонких оболочек кольцевой сегмент заменяется плоским элементом его срединной поверхности. Напряжения по граням кольцевого сегмента рассматриваются как напряжения на элементарных площадках, расположенных на площади грани. Аналогично теории балок, напряжения по площади суммируются по интегралу, для которого пределами являются половина толщины стенки от срединной поверхности. В итоге вместо напряжения на гранях трехмерного твердого тела кольцевого сегмента заменяются усилиями и моментами на сторонах плоского элемента срединной поверхности.

Здесь важным является отметить, что на плоской элемент действуют и усилия и моменты. И в результате расчетный аппарат теории тонких оболочек позволяет рассчитывать и усилия и моменты, то есть имеет моментную теорию.

В теории толстых оболочек по задаче Ламе твердое тело кольцевого сегмента сразу заменяется твердым телом кубического элемента, который рассматривается в теории упругости в разделе о главных напряжениях. Тензор напряжений, конечно, является математическим термином. Здесь имеется в виду кубический элемент сплошной среды, по граням которого действуют главные напряжения.

Обращаю внимание, в связи с последующим изложением, для кубического элемента имеется направление расположения, при котором по его граням будут действовать только главные напряжения. Направление главных напряжений и ориентация этого кубического элемента как правило отличается от направления напряжений от нагрузки и соответствующего им кубического элемента.