Теория струн и скрытые измерения Вселенной - страница 19

стр.

Вполне возможно, что именно Пифагор впервые доказал эту теорему, хотя вы должны были обратить внимание на мои слова о том, что ему лишь «приписывается» ее доказательство, будто бы существуют некоторые сомнения по поводу авторства. Так оно и есть. Пифагор был культовой фигурой, и многие из открытий его помешанных на математике последователей были приписаны Пифагору задним числом. Таким образом, вполне возможно, что доказательство теоремы Пифагора было получено одним из продолжателей его дела через одно или два поколения после Пифагора. Правды мы уже никогда не узнаем: Пифагор жил в VI столетии до нашей эры и практически не оставил после себя никаких записей.

К нашему счастью, сказанное выше не относится к наследию Евклида, одного из наиболее известных геометров всех времен и народов, превратившего геометрию в точную, строгую дисциплину. В отличие от Пифагора, Евклид оставил после себя огромное количество сочинений, наиболее выдающимся из которых являются «Начала», увидевшие свет примерно в 300 году до нашей эры — трактат в тринадцати томах, восемь из которых посвящены геометрии в двух и трех измерениях. «Начала» называют одной из наиболее влиятельных книг из когда-либо написанных, «прекрасным трудом, значение которого сравнимо разве что со значением Библии».[16]

Рис. 2.1. Теорему Пифагора чаще всего иллюстрируют для случая двух измерений, изображая прямоугольный треугольник, в котором сумма квадратов катетов равна квадрату гипотенузы: a>2 + b>2 = c>2. Однако, как показано на приведенном рисунке, эта теорема так же верна и для случая трех и большего числа измерений a>2 + b>2 + c>2 = d>2


В своем знаменитом сочинении Евклид заложил основы не только геометрии, но и всей математики, которая неразрывно связана с тем принципом аргументации, который сейчас называют Евклидовым: любое доказательство начинается с четкого определения понятий и набора однозначно установленных аксиом или постулатов (эти два слова являются синонимами) и осуществляется при помощи строгих логических умозаключений; доказанная теорема, в свою очередь, может быть положена в основу доказательства дальнейших утверждений. Евклид, пользуясь исключительно этим методом, доказал в общей сложности больше четырехсот теорем, сведя таким образом воедино все геометрические знания своего времени.

Стэнфордский математик Роберт Оссерман объяснил столь безапелляционное приятие метода Евклида следующим образом: «В основе всего лежало чувство уверенности, что в мире абсурдных суеверий и сомнительных догадок утверждения, приведенные в “Началах”, являются твердо установленной истиной без малейшей тени сомнения». Эдна Сент-Винсент Миллей выразила аналогичное восхищение в своем стихотворении «Евклид один лишь видел обнаженной красоту».[17]

Следующим человеком, внесшим решающий вклад в предмет нашего рассказа, — впрочем, без какого-либо пренебрежения к заслугам других достойных математиков, о достижениях которых мы не упомянули — можно считать Рене Декарта. Как уже говорилось в предыдущей главе, Декарт значительно расширил сферу исследований геометрии, введя систему координат, позволившую математикам рассуждать о пространствах любых размерностей и использовать алгебру при решении геометрических задач. До того как Декарт преобразовал геометрию, ее область исследований была ограничена прямыми линиями, окружностями и коническими сечениями — такими кривыми, как параболы, гиперболы и эллипсы, которые можно получить, рассекая плоскостью бесконечный конус под разными углами. Появление системы координат дало возможность описывать при помощи уравнений очень сложные фигуры, которые невозможно вообразить каким-либо другим способом. Рассмотрим, к примеру, уравнение x>n + y>n = 1. При помощи декартовых координат решить это уравнение и нарисовать соответствующую кривую не составит труда. Однако до появления системы координат было непонятно, как ее изобразить. В местах, которые ранее считались непроходимыми, Декарт указал путь, по которому двигаться дальше.

Этот путь стал еще четче, когда через пятьдесят лет после Декарта Исаак Ньютон и Готфрид Лейбниц, разделяющие идеи Декарта в области аналитической геометрии, создали дифференциальное и интегральное исчисление. На протяжении десятилетий и столетий новые инструменты дифференциального и интегрального исчисления внедрялись в геометрию такими математиками, как Леонард Эйлер, Жозеф Лагранж, Гаспар Монж и, в первую очередь, Карл Фридрих Гаусс, под чьим руководством в 1820-х достигла своего совершеннолетия так называемая