Теория струн и скрытые измерения Вселенной - страница 20
. Дифференциальная геометрия предполагает использование декартовой системы координат для описания поверхностей, которые затем могут быть детально проанализированы с помощью методов дифференциального исчисления; дифференцирование — это метод нахождения угла наклона любой гладкой кривой.
Создание дифференциальной геометрии, которая продолжила свое развитие и после Гаусса, стало величайшим достижением. С помощью инструментов дифференциального исчисления геометры описывали свойства кривых и поверхностей с намного большей точностью, чем это было возможно ранее. Подобные сведения можно получить путем дифференцирования или, что эквивалентно, путем нахождения производных, показывающих, как изменяется функция в ответ на изменение аргумента. Функцию можно рассматривать как алгоритм или формулу, в которой каждому числу, поданному на вход (значению аргумента), ставится в соответствие некоторое число на выходе (значение функции). Например, в функции y = x>2 значение аргумента x подается на вход, а на выходе получается значение функции y. Функция однозначна: если вы будете подставлять в нее одно и то же значение x, то всегда получите одно и то же значение y, так, в нашем примере, подставляя x = 2, вы всегда получите y = 4. Производная характеризует отношение приращения значения функции к заданному приращению аргумента; величина производной отражает чувствительность функции к незначительным изменениям аргумента.
Производная — это не только абстрактное понятие; это реальное число, которое можно вычислить и которое сообщает нам о наклоне кривой или поверхности в данной точке. Например, в приведенном выше примере можно найти производную функции (которая в данном случае оказывается параболой) в точке x = 2. Что произойдет со значением функции y, если немного сместиться из этой точки, например, в точку x = 2,001? В этом случае значение y станет равным 4,004 (с точностью до трех знаков после запятой). Производная в этой точке будет равна отношению приращения значения функции (0,004) к приращению значения аргумента (0,001), то есть 4. Именно это число и будет производной функции при x = 2 или, другими словами, наклоном кривой (параболы) в этой точке.
Расчеты, конечно, могут оказаться гораздо более трудоемкими при переходе к более сложным функциям и более высоким размерностям. Но вернемся на время к нашему примеру. Мы получили производную функции y = x>2 из отношения приращения y к приращению x, поскольку производная функции говорит нам о наклоне (или крутизне) в данной точке — тогда как наклон служит непосредственной мерой приращения y по отношению к приращению x.
Проиллюстрируем это другим способом: рассмотрим мяч, лежащий на некоей поверхности. Если мы слегка толкнем мяч в какую-либо сторону, как это отразится на его вертикальной координате? Если поверхность более или менее плоская, то высота, на которой находится мяч, практически не изменится. Но если мяч находился на крутом склоне, изменение высоты будет более существенным. Таким образом, производные характеризуют наклон поверхности в непосредственной близости от мяча.
Рис. 2.2. Площадь фигуры, ограниченной кривой, можно вычислить при помощи интегрального исчисления, разделив область под кривой на бесконечно узкие прямоугольники и затем сложив их площади. По мере того как прямоугольники становятся все уже и уже, это приближение становится все точнее и точнее. Если перейти к пределу, при котором ширина прямоугольников стремится к нулю, результат станет точным
Конечно, нет причин ограничиваться только одной точкой на поверхности. Путем вычисления производных, показывающих изменение геометрии (или формы) для различных точек поверхности, можно точно рассчитать кривизну объекта в целом. Хотя наклон в каждой данной точке дает только локальную информацию, относящуюся к «окрестностям» указанной точки, значения, полученные для различных точек, можно объединить и вывести функцию, описывающую наклон объекта в любой точке. Затем при помощи интегрирования — грубо говоря, путем сложения и усреднения — можно получить функцию, описывающую объект как единое целое. Таким образом, мы получим представление о структуре всего объекта, что и является центральной идеей всей дифференциальной геометрии — возможность создать общую картину для всей поверхности или многообразия на основе локальной информации, полученной из производных, отражающих геометрию (или метрику) в каждой точке.