Теория струн и скрытые измерения Вселенной - страница 22
Аналогично, если бы удалось сделать из цилиндра тор, соединив его концы вместе — также без растяжений и деформаций, — то внутренняя кривизна полученного тора все равно осталась бы равной внутренней кривизне цилиндра, то есть нулю. На практике, однако, сделать так называемый плоский тор — по крайней мере в двух измерениях — невозможно по причинам, которые будут обсуждаться далее (в четвертой главе). Но теоретически подобный объект (называемый абстрактной поверхностью) изготовить можно, и он столь же важен для математики, как и те объекты, которые мы называем реальными.
Рис. 2.4. Тороидальная (имеющая форму бублика) поверхность может быть совершенно «плоской» (имеющей нулевую гауссову кривизну), поскольку ее можно изготовить, сворачивая лист бумаги в трубку или цилиндр и затем соединяя концы полученного цилиндра
С другой стороны, сфера довольно существенно отличается от цилиндра или плоского тора. Рассмотрим, к примеру, кривизну сферы радиуса r. В этом случае кривизна одинакова по всей поверхности сферы, и ее можно определить как 1/r>2. Мы видим, что на поверхности сферы все направления эквивалентны, что явно неверно в случае цилиндра или бублика. Именно по этой причине не важно, как ориентирована сфера в трехмерном пространстве; маленький жучок, живущий на ее поверхности, скорее всего, не замечает пространственной ориентации сферы и все, что его беспокоит и дается ему в ощущениях, — это геометрия его локального двухмерного мира.
Наряду с Николаем Лобачевским и Яношем Бойяи Гаусс внес большой вклад в наше понимание абстрактного пространства, в частности для двухмерного случая, хотя он сам признавал наличие определенной путаницы в этой области. И все же, в конечном итоге, ни Гаусс, ни его коллеги не сумели полностью освободить наши представления о пространстве от евклидовых рамок. Гаусс выразил свое замешательство в письме, написанном им в 1817 году астроному Генриху Вильгельму Маттеусу Ольберсу: «Я все больше убеждаюсь, что необходимость нашей геометрии не может быть доказана, по крайней мере, человеческим рассудком и для человеческого рассудка. Может быть, в следующей жизни мы придем к взглядам на природу пространства, которые нам сейчас недоступны».[18]
Некоторые ответы были получены не в «следующей жизни», как написал Гаусс, а в следующем поколении благодаря усилиям и прекрасным способностям его студента Георга Фридриха Бернхарда Римана. Риман отличался слабым здоровьем и умер молодым, но за сорок лет своей жизни он смог перевернуть существовавшие представления о геометрии, а вместе с ними и представления о Вселенной. Риман ввел особую разновидность поля — набор чисел, соответствующий каждой точке пространства, пользуясь которым можно найти расстояние между двумя точками вдоль любой линии, которая их соединяет. Полученная информация, в свою очередь, может быть использована для определения степени искривленности пространства.
Проще всего мерить пространство в одном измерении. Все, что необходимо для измерения, например, прямой линии, — это линейка. Для двухмерного пространства, такого как пол большого танцевального зала, мы обычно берем две перпендикулярные линейки — одна из которых сопоставляется оси x, а вторая — оси y — и находим расстояние между двумя точками путем построения прямоугольного треугольника и применения теоремы Пифагора. В свою очередь, в трех измерениях нам необходимы три перпендикулярные линейки, соответствующие осям x, y и z.
В искривленных, неевклидовых пространствах все становится сложнее и интереснее, поскольку точно откалиброванные перпендикулярные линейки для измерения искривленного пространства уже не пригодны. Однако в этом случае для расчета расстояний мы можем использовать риманову геометрию. Подход, который мы применяем для расчета длины кривой, лежащей на искривленном многообразии, вам уже знаком: кривую представляют в виде ломаной, состоящей из касательных бесконечно малой длины, и затем берут интеграл вдоль всей линии, чтобы получить полную длину.
Сложность этого подхода обусловлена тем, что в искривленном пространстве длина каждого отрезка ломаной может изменяться при перемещении от одной точки многообразия к другой. Для того чтобы преодолеть эту трудность, Риман создал инструмент, известный как