Термодинамика реальных процессов - страница 18

стр.

N6= ?6(N3)       (10)

Мера формы поведения есть однозначная функция ф6 меры формы вещества.

Для явления взаимодействия аналогичное уравнение имеет вид

N6в = ?6в(N3в)       (11)

где ?6в - соответствующая функция.

Соотношения (10) и (11) представляют собой уравнения явлений основного и взаимодействия. Это самые важные в ОТ количественные связи, развитие которых в дальнейшем приведет к необозримому множеству следствий, в том числе к формулировке количественных принципов, или начал. Для целей анализа Вселенной целесообразно несколько преобразовать эти уравнения, сократив число входящих в них характеристик.

Здесь уместно сразу же оговориться, что величины  N3,  N3в , N6  и  N6в  входящие в уравнения (10), (11) и характеризующие данное явление с качественной и количественной стороны, в общем случае могут иметь весьма сложный вид и смысл. Ведь явление может содержать самые разнообразные вещества, образующие крайне замысловатые структуры с не менее замысловатыми взаимодействиями между ними и их отдельными частями. Это неизбежно накладывает соответствующий отпечаток и на способы поведения подобных структур. В результате крайне усложняется также смысл функций  ?6  и  ?6в , связывающих упомянутые величины равенствами (10) и (11). Однако все эти сложности нас не коснутся, так как мы будем решать поставленную проблему не в общем виде, а для одного простейшего, но весьма принципиального и важного для теории и практики частного случая, где все ясно [ТРП, стр.35-36].


5. Основное уравнение ОТ.

Воспользуемся расчленением конкретных форм вещества и поведения на соответствующие количества и качества, в частности применим обозначения (4) и (5). Тогда равенство (10) примет вид

N4 + N5 = ?6 (N1 + N2)     (12)

Главенствующая роль всегда принадлежит количеству, ибо качественные (структурные) характеристики данной формы вещества и его поведения находятся в прямой зависимости от количественных, поэтому можно записать

N2 = Ф2(N1)       (13)

N5 = ?5(N4)

где  Ф2  и  ?5  - соответствующие функции.

Подставив эти меры в предыдущее равенство, будем иметь

N4 = Ф4(N1)       (14)

где  Ф4  - соответствующая функция. Мера количества формы поведения N4 есть однозначная функция меры количества формы вещества  N1 . Это окончательный вид основного уравнения ОТ.

В основном уравнении (14) фактически заключены все количественные связи между всеми характеристиками явления. Если пожелать детализировать основное уравнение, то можно добавить к нему следующую систему уравнений:

N2 = Ф2(N1)

N5 = Ф5(N1)       (15)

Xi = Фi(N1))

где  Ф2 ,  Ф5  и  Фi  - соответствующие функции.

В системе уравнений (15) первые два получены из выражений (13) и (14). Под свойством (характеристикой)  Xi  можно понимать любую из характеристик явления, например  N3 ,  N6  и т.д. Таким образом, любое свойство данной формы явления есть функция меры количества формы вещества  N1 .

Меру количества формы вещества  N1 , являющуюся аргументом в уравнениях (14) и (15), условимся именовать экстенсором. Происхождение этого термина станет ясным из дальнейшего изложения.

Все сказанное справедливо также для явления взаимодействия, применительно к которому можно написать аналогичные равенства, но уже с индексом "в". Вместе с тем явление взаимодействия однозначно определяется основным явлением, то есть фактически величиной экстенсора основного явления. Следовательно, каждая характеристика явления взаимодействия тоже есть функция экстенсора  N1 , поэтому под свойством  Xi  мы вправе понимать также любую из характеристик явления взаимодействия.

Весьма существенно, что в равенствах (14) и (15) все характеристики данной формы явления (основного и взаимодействия) связаны между собой монотонно возрастающими функциями. Это непосредственно вытекает из того факта, что увеличение количества вещества  N1  сопровождается усложнением его структуры  N2 , ростом количества  N4  и качества  N5  поведения. Монотонно возрастающий характер основных функций позволит в будущем сделать далеко идущие выводы, в частности cформулировать особый принцип минимальности.