Том 14. Истина в пределе. Анализ бесконечно малых - страница 33

стр.

Несколько лет спустя в письме к одному из своих первых учеников Якобу Бернулли Лейбниц написал, что именно эта работа Паскаля со всей ясностью показала ему, что задачи о касательных и квадратурах являются взаимно обратными. Лейбниц добавил, что у Паскаля, должно быть, была повязка на глазах — ничем иным нельзя объяснить то, что он сам не заметил этого. Лейбниц продемонстрировал племяннику Паскаля свою вычислительную машину в июне 1674 года. Паскаль также придумал вычислительную машину, которая, однако, была способна выполнять только сложение и вычитание. Лейбниц выразил сожаление, что некоторые статьи Паскаля были до сих пор не опубликованы, и попросил его племянника отправить ему несколько рукописей этого французского математика и философа.

В течение 1673 года Лейбниц с помощью характеристического треугольника совершил несколько важных открытий. В частности, он открыл метод преобразования, напоминающий современный метод интегрирования по частям. Взяв за основу этот метод, он смог найти разложение в ряд для функции арктангенса и получил свой знаменитый бесконечный ряд, с помощью которого можно вычислить число 71. В декабре 1673 года Лейбниц обсудил с Гюйгенсом возможность решения классической греческой задачи о квадратуре круга с помощью этого ряда.

Далее он занялся решением задач о касательных, взяв за основу метод де Слюза. Хоффман, подробно изучив рукописи Лейбница того периода, сделал вывод, что в своей работе Лейбниц опирался на труды вышеупомянутых авторов, к которым следует добавить Гюйгенса, и не использовал работы Ньютона и Барроу.

В письмах, отправленных во второй половине 1674-го и в начале 1675 года, Лейбниц сообщил Ольденбургу о своих результатах, полученных, по его словам, отчасти «благодаря редкой удаче». В частности, он ознакомил Ольденбурга (не приведя ни подробностей, ни формулы) с рядом для вычисления числа 71, разложением функции арксинуса в ряд, а также косвенно упомянул метод преобразования. На этот раз Ольденбург ответил ему в более критическом тоне, чем в ранний период их знакомства, так как в то время Лейбниц не скрывал своего дилетантства. Также не приводя ни подробностей, ни формул, он сообщил Лейбницу о результатах, полученных британскими математиками, в частности Ньютоном и Джеймсом Грегори: «Мне хотелось бы обратить ваше внимание на то, что теория и метод измерения кривых, которые использует уже упомянутый Джеймс Грегори, а также Исаак Ньютон, могут быть применены к любой кривой, механической или геометрической». В письме от 20 марта 1675 года Лейбниц просит подробнее рассказать об этих результатах.

Ольденбург переадресовал письмо Коллинзу, после чего 12 апреля направил Лейбницу ответ, в котором указывается разложение в ряд для синуса и арксинуса, полученное Ньютоном, ряды Грегори для тангенса и арктангенса, а также некоторые результаты, касающиеся интерполяции, квадратур и других задач. Как бы то ни было, в письме приводились лишь результаты, но не объяснялось, каким способом они были получены. Лейбниц приписал авторство этих рядов Ольденбургу и, по мнению Хоффмана, не совсем понял, что попало ему в руки, так как пообещал сравнить эти результаты со своими и дать по этому поводу комментарий, но так никогда и не сделал этого. Так как о некоторых из этих рядов Лейбниц узнал позднее и из других источников, это дало Ньютону основания впоследствии обвинить его в плагиате результатов, полученных через Ольденбурга.

Мы можем достаточно точно указать, когда Лейбниц открыл анализ бесконечно малых. Это произошло в конце октября — начале ноября 1675 года, если вообще уместно приводить столь точные даты для такого значимого открытия. В сохранившихся рукописях, которые относятся к этому периоду, особенно тех, что датированы 29 октября и 11 ноября, Лейбниц вводит систему обозначений математического анализа и описывает с ее помощью алгоритм, в котором впоследствии станут заметны различия с работами его предшественников, приводит правила анализа и определяет интегрирование и дифференцирование как взаимно обратные операции. Хоффман пишет: «После того как был сделан этот первый, решающий шаг в сторону «алгебраизации» задач о бесконечно малых, перед этим человеком, умевшим определить характерные и общие элементы среди мешанины похожего, открылась новая картина мира. <…> Он четко понимал, чего не хватает в созданном им математическом анализе, но знал, что эти недостатки можно исправить и что путь в новый мир успешно открыт».