Том 20. Творчество в математике. По каким правилам ведутся игры разума - страница 21
, x>2, х>3, … приближаются к х, точки Р>1, Р>2, Р>3 … приближаются к Р (см. рисунок ниже). Следовательно, мы поставим в соответствие точке Р тангенс угла наклона касательной, равный значению, к которому стремятся тангенсы этого угла в каждой из предшествующих точек.
Пифагор, известнейший из математиков, создал самую знаменитую математическую теорему. Ее доказательства, предлагаемые в средней школе, совершенно не похожи на вариант, предложенный Евклидом. Он также основан на вычислении площадей, в нем, как и в формулировке самой теоремы, фигурируют площади квадратов, построенных на сторонах прямоугольного треугольника. Однако площади используются только для доказательства. Сама же теорема используется только для вычисления длины.
Как правило, обычно доказывается прямая теорема Пифагора:
если a, b, с — катеты и гипотенуза прямоугольного треугольника соответственно, то а>2 + Ь>2 = с>2.
Обратное утверждение практически никогда не доказывается:
если а>2 + Ь>2 = с>2, то а, Ь, с являются катетами и гипотенузой прямоугольного треугольника соответственно.
Это утверждение имеет огромное практическое значение, так как позволяет строить поверхности, которые будут располагаться друг к другу под прямым углом, например стены здания. Этот же метод использовали египтяне, которым было известно, что треугольник со сторонами 3, 4 и 5 м — прямоугольный. Это соотношение сторон прямоугольного треугольника было известно в самых разных частях света и в разные эпохи, однако используемые значения порой существенно отличались — например, применялись треугольники со сторонами 60 см, 80 см и 1 м.
Задолго до Пифагора, в Древнем Египте и Месопотамии, были известны тройки целых чисел (позднее их стали называть пифагоровыми), в которых квадрат одного числа равнялся сумме квадратов двух других.
Объяснить закономерность, описывающую эти числа, математики того времени не могли. Но можно обнаружить интересные соотношения между числами, например 5>2 + 12>2 = 13>2: если не знать, в чем их причина и каковы их следствия, то подобные соотношения будут всего лишь интересными фактами. Строгое доказательство теоремы Пифагора вызвало первый крупный кризис в математике.
Девизом пифагорейской школы было «все есть число». Пифагорейцы наделяли числа мистическими свойствами и считали, что любые соотношения между вещами описываются соотношениями натуральных чисел. Если применить теорему Пифагора к диагонали квадрата, получим удивительный результат:
Пифагорейцы считали, что длина D (квадратный корень из 2) должна быть соизмерима со стороной квадрата, то есть быть дробным числом. Если бы мы разделили сторону квадрата на достаточно большое число частей, например на миллион, то длина диагонали должна была равняться целому числу частей. Можно ли представить ее как 1414213? Нет, так как квадратный корень из двух нельзя представить в виде частного двух натуральных чисел, и это помешало найти меру, которой можно было бы вычислить и сторону квадрата, и его диагональ.
Теорема породила чудовище, невозможное с общепринятой точки зрения.
Оказалось, что не все соотношения можно свести к отношению двух целых. Нечто столь простое, как диагональ квадрата, оказалось несоизмеримым с его стороной.
Так появились несоизмеримые величины. В то время математики не обладали достаточными знаниями, чтобы доказать, что длина окружности также несоизмерима с ее диаметром, то есть что число π несоизмеримо с дробными числами.
Рассмотрим, почему квадратный корень из 2 нельзя представить как частное двух натуральных чисел. Всякое натуральное число n можно представить в виде произведения простых множителей. Пример:
12 = 2>2·3;
315 = 3>2·3·7.
Заметим, что при возведении числа в квадрат все простые множители в его разложении будут встречаться четное число раз:
12>2 = (2>2·3)>2 = 2>4·3>2;
315>2 = (З>2·5 ·7)>2 = З>4·5>2·7>2.
Если частное двух натуральных чисел m и n равно квадратному корню из двух, то
Теперь разложение на простые множители для m>2 и для m>2 содержит четное число простых множителей. По этой причине, вне зависимости от того, присутствует ли 2 в разложении