Том 3. Простые числа. Долгая дорога к бесконечности - страница 21
Прусский математик Кристиан Гольдбах (1690–1764) часто переписывался с Эйлером. 18 ноября 1752 г. Гольдбах послал ему письмо, содержащее следующее утверждение: «Любое четное число, большее 2, можно представить в виде суммы двух простых чисел». Выражение «сумма двух простых чисел» включало в себя и случаи, когда простое число повторяется. Например,
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 3 + 7
12 = 5 + 7
14 = 3 +11.
16 декабря того же года Эйлер прислал ответ, где сообщал, что проверил гипотезу до числа 1000, а в другом письме от 3 апреля 1753 г. он написал, что проверил результат до числа 2500. В настоящее время с помощью компьютеров гипотеза проверена для всех четных чисел до двух триллионов. Однако в общем виде гипотеза еще не доказана. По мнению специалистов, она является одной из самых сложных проблем за всю историю математики.
Чен Цзинжунь (1933–1996), один из самых выдающихся математиков XX в., получил в 1966 г. лучший результат в деле доказательства гипотезы Гольдбаха. Он доказал, что любое достаточно большое четное число можно представить в виде суммы простого числа и полупростого (произведения двух простых чисел). Этот факт засвидетельствован на почтовой марке Китайской Народной Республики, выпущенной в 1999 г. в честь Чена.
* * *
ДЯДЯ ПЕТРОС И ПРОБЛЕМА ГОЛЬДБАХА
Так называется знаменитый роман Апостолоса Доксиадиса, в котором главный герой, бывший математик, просит своего племянника решить математическую задачку. Племянник соглашается на предложенное дядей условие: отказаться от изучения математики в университете, если ему не удастся решить задачу за время отпуска. Потратив все лето на безрезультатные попытки, племянник сдается и переходит на юридический факультет. Задачей была именно гипотеза Гольдбаха. В 2000 г., рекламируя этот роман, английский издатель Тони Фабер предложил вознаграждение в миллион долларов тому, кто сможет доказать гипотезу до апреля 2002 г. Как и следовало ожидать, приз никому не достался.
Обложка некоторых изданий книги Апостолоса Доксиадиса с изображением раковины наутилуса, представляющей из себя логарифмическую спираль.
Глава 4
Логарифмы и простые числа
Когда мы исследуем объект, приборы, которые мы используем, тоже влияют на результаты наблюдений. Например, развитие астрономии было тесно связано с совершенствованием телескопов, а микробиология — с микроскопами. Оборудование для наблюдений и измерений стало ключевым фактором, открывающим двери в неведомые миры. В этом смысле математика не является исключением: объекты ее исследования нематериальны, но даже они могут изучаться с высокой степенью точности.
Одним из самых мощных математических инструментов, когда-либо изобретенных человеком, являются логарифмы, служившие сначала для упрощения расчетов, но благодаря Карлу Гауссу превратившиеся в устройство для поиска простых чисел.
В некоторых учебниках упоминаются логарифмы Непера, в то время как в других — логарифмы Нэйпера. На самом деле в истории математики это имя появлялось во многих вариантах: Нэйпер, Неппер, Нейпер, Нейпир, Непер… (Napeir, Nepair, Nepeir, Neper, Napare, Naper, Naipper…). Единственное написание, которое создатель логарифмов ни разу в своей жизни не использовал, было Непер (Napier) — и именно оно сейчас считается правильным!
Шотландский математик и богослов Джон Непер вошел в историю благодаря открытому им методу упрощения сложных расчетов.
Джон Непер родился в 1550 г. в замке Мерчистон близ Эдинбурга в Шотландии. Он был сыном аристократа Арчибальда Непера, и жизнь его проходила в очень комфортных условиях. Джон изучал теологию в Сент-Эндрюсском университете. Его интерес к математике проявился во время долгого путешествия по Европе. Известно, что он учился в Парижском университете, а также провел некоторое время в Италии и в Голландии. Возвратившись в Шотландию в 1572 г., он женился на Элизабет Стерлинг. Следующие два года он посвятил строительству замка в Гартнесс. Непер проводил много времени в этом замке, именно в этот период погрузившись в таинственные занятия математикой. Слово «таинственные» использовано неслучайно, потому что когда Непер изредка появлялся на публике, он был одет во все черное и носил на плече черного петуха. Его эксцентричность принесла ему репутацию чародея, которая только подтверждалась демонстрацией его математических навыков.