Том 3. Простые числа. Долгая дорога к бесконечности - страница 36

стр.

(1805–1865). Однажды он гулял с женой на окраине Дублина и вдруг остановился будто от удара электрическим током: «Казалось, я вдруг почувствовал, как замыкаются гальванические цепи мыслей, и вспыхнувшей искрой были основные уравнения, связывающие i, j, k…».

Гамильтон вдруг осознал, что не три, а четыре числа необходимы для описания пространственного поведения гиперкомплексных чисел. Это действительно волшебный момент, когда исследователь вдруг чувствует, как вспыхивает свет в комнате, в которой он никогда раньше не бывал.

Далее Пуанкаре говорит о процессе отбора, который идет на подсознательном уровне, в результате чего мы осознаем одни идеи и отвергаем другие. В конце концов, когда мы не в состоянии решить, являются ли эти идеи истинными или ложными, единственным критерием отбора является математическая красота.

* * *

ПАРАДОКСЫ БЕСКОНЕЧНОСТИ: ОТЕЛЬ ГИЛЬБЕРТА

Отель Гильберта — воображаемое здание, в котором имеется бесконечное количество комнат. Управляющий отелем гордится тем, что никогда не отказал ни одному гостю. А теперь представьте себе: поздним вечером, когда все номера отеля заняты, внезапно появляется новый гость. Портье идет к управляющему и сообщает ему, что гостя некуда поселить. Управляющий говорит, что надо попросить всех жильцов переселиться в номер по соседству, так что гость из первого номера переселяется во второй, гость из второго — в третий и так далее. После этого первая комната освободится, и туда можно будет поселить нового гостя. Однако в полночь портье снова прибегает к управляющему. На этот раз он просто в отчаянии. Только что для участия в симпозиуме прибыло бесконечное количество математиков. «Мы же не сможем поселить их всех!» — восклицает портье. Подумав немного, управляющий предлагает следующее: «Нам придется попросить наших гостей о еще одном одолжении. Пусть каждый умножит номер своей комнаты на два и переселится в комнату с полученным номером». Таким образом, гость из четвертого номера переселяется в комнату 8, гость из комнаты 23 — в комнату 46, гость из комнаты 352 — в комнату 704 и так далее. После этого все комнаты с нечетными номерами освободятся. В них и поселятся участники симпозиума.



Портрет Давида Гчльберта, 1912 г.

* * *

На третьей стадии математик работает совершенно сознательно и тщательно анализирует идеи, принимая одни и отбрасывая другие. Он может вернуться один или несколько раз ко второй стадии, пока не решит проблему окончательно, следуя правилам и соглашениям, принятым в математике, так чтобы решение имело законченный вид.

Для совершения математического открытия важны все три этапа, но особенно интересен второй: именно на этой стадии мысль парит, вырвавшись из плена сознания. Жак Адамар посвятил одну из своих книг, «Исследование психологии процесса изобретения в области математики» (1945), изучению роли подсознания в творческой деятельности, концентрируясь в основном на работе математиков. В книге описывается процесс математических исследований, который начинается с сознательного выбора наиболее важных аспектов проблемы, чаще всего после получения промежуточных результатов. Адамар думал, что за этим периодом должен следовать «период отдыха», когда задачу откладывают в сторону, а затем следуют моменты вдохновения, являющиеся результатом мыслительных процессов, протекающих в подсознании математика.

Наконец, Адамар говорит о так называемом этапе «наведения порядка», когда вступает в свои права формальный подход. Адамар считал, что работа подсознания имеет решающее значение на протяжении всего процесса, особенно в период «отдыха».



Анри Пуанкаре был ученым, который проявил себя во всех областях математики.


Выводы Адамара согласуются с рассуждениями Пуанкаре, хотя последний придает большее значение периоду отдыха, включающему периоды сна. В истории науки, и особенно в истории математических открытий, существует множество свидетельств того, что многие ключевые идеи приходили к ученым во время сна. Некоторые исследователи сообщают, что прорыв в их работе произошел во сне, в котором они размышляли над какой-то проблемой. Большинство ученых говорят, что решение пришло сразу после пробуждения, особенно после напряженной работы накануне. Например, Дирихле признавался, что перед сном клал под подушку «Арифметические исследования» Гаусса. Он знал, что во время сна будет происходить таинственный процесс, который нельзя контролировать, но благодаря которому на следующий день он сможет осознать неясные места книги — те, что не мог понять накануне.