Том 3. Простые числа. Долгая дорога к бесконечности - страница 39
По словам Харди, его самым большим вкладом в математику было то, что он открыл Рамануджана.
* * *
Из всех математиков, получивших письмо Рамануджана, лишь Харди оценил его результаты. Рамануджан послал ему около 120 теорем, содержащих много формул.
Вспоминая это, Харди писал: «Я никогда не видел ничего подобного. Одной страницы было бы достаточно, чтобы показать, что это работа математика самого высокого уровня. Эти результаты должны были быть правильными, поскольку если бы они не были правильными, то ни у кого не хватило бы воображения придумать их».
В мае 1913 г. Харди получил для Рамануджана грант на обучение в Кембридже. Сначала Рамануджан отказался, потому что его мать не хотела, чтобы он уезжал в Англию, но в конце концов она смягчилась и благословила его в путь. Причина такой перемены, как рассказывал Харди, заключалась в том, что «однажды утром его мать сказала, что видела во сне сына, сидящего в большом зале в окружении европейцев, и что богиня Намагири приказала ей не становиться на пути сына и помочь ему достичь своей цели».
В конце концов благодаря усилиям Харди Рамануджан получил возможность учиться в Кембридже частично за счет средств Мадраса и частично за счет средств Тринити-колледжа. Английский математик, который стал его учителем, столкнулся со сложной задачей. Какой метод избрать, чтобы обучить Рамануджана современной математике?
«Глубина его знаний так же велика, как и пробелы в них», — восклицал Харди. Трудности заключались еще и в огромном количестве тем, которыми занимался Рамануджан, смешивая новые результаты с уже известными. Рамануджана надо было в значительной степени переучивать, но Харди старался не повредить слишком большим количеством формализма то, что он называл «чарами вдохновения».
* * *
НОМЕРА ТАКСИ
После исторической встречи Рамануджана и Харди в санатории Патни наименьшие числа, которые могут быть выражены в виде суммы двух кубов n различными способами, получили название «номеров такси». Они определяются следующим образом: «n-й номер такси есть наименьшее натуральное число, которое может быть выражено n различными способами в виде суммы двух положительных кубов». В настоящее время известны следующие «номера такси»:
Та(1) = 2;
Та(2) = 1729;
Та(3) = 87539319;
Та(4) = 6963472309248;
Та(5) = 48988659276962496.
Шестой «номер такси», Та (6), пока не найден.
* * *
Рамануджан (в центре) и Харди (крайний справа) на групповой фотографии у Тринити-колледжа в Кембридже.
Рамануджан провел в Кембридже пять лет, опубликовав за это время 21 статью. Пять из них были написаны совместно с Харди, который в конце концов заявил: «Я научился у него большему, чем он узнал от меня».
Весной 1917 г. у Рамануджана появились первые симптомы туберкулеза, который в конечном итоге стал причиной его смерти. Летом того же года он лечился в санатории. Большую часть оставшейся жизни он провел в постели. Осенью 1918 г., когда здоровье немного улучшилось, он получил долгожданную стипендию Тринити-колледжа и возобновил научную работу. Это время оказалось одним из самых продуктивных периодов его научной биографии. В начале 1919 г. он вернулся в Индию, где на следующий год умер.
Большинство результатов Рамануджана содержится в письмах, некоторые работы также собраны в трех личных записных книжках, одна из которых была потеряна и нашлась лишь в 1976 г. Еще никто не изучил его труды в полном объеме. Несмотря на то, что он умер в возрасте всего лишь 33 лет, Рамануджан оставил после себя более 4000 теорем.
Работа Рамануджана над простыми числами, в частности, поиск точной формулы для их описания, окутана тайной, хотя в определенной мере можно считать, что она закончилась неудачей. Харди писал по этому поводу: «Хотя Рамануджан добился блестящих успехов во многих областях, в работе над проблемами теории простых чисел он определенно потерпел неудачу. Можно сказать, что это было его единственной большой неудачей. Однако мне кажется, эта неудача в некотором смысле была не менее прекрасна, чем любая из его побед…»
Рамануджан не знал о работах Римана и Гаусса, но сам пытался найти формулу, которая даст ему список всех простых чисел. Этот список нужен был ему для того, чтобы посчитать, сколько существует простых чисел, меньших любого заданного числа. Результаты, которые он посылал Харди, не содержат доказательств его утверждений. Но одна формула почти выдает амбиции Рамануджана: