Том 9. Загадка Ферма. Трехвековой вызов математике - страница 19

стр.



Воссозданный образ Архимеда кисти Доменико Фетти, 1620 год. Ферма тщательно изучил труды этого древнегреческого ученого.


Кроме того, Ферма воспользовался моментом, чтобы рассказать Мерсенну о двух задачах о нахождении максимумов, и попросил его показать задачи парижским математикам. Первое же письмо дало Мерсенну понять, кто перед ним.

С одной стороны, это яркий пример эпистолярных отношений, существовавших в научном сообществе того времени, так как письма были одним из основных средств обмена идеями. С другой стороны, Ферма избегает любых проявлений нескромности. Он служит науке, а не стремится завоевать авторитет. В письме видна его тяга к новым задачам, которые помогали ему оценить проницательность современников. Его задачи были вдвойне интересны благодаря тому, что Ферма знал ответы на них. Если кому-то удавалось решить их, то возникали сомнения по поводу авторства решения, но если найти ответ долго никому не удавалось, то ценность найденного в итоге решения многократно возрастала — вместе со славой его автора. Разумеется, Мерсенн с радостью передавал задачи Ферма своим коллегам.


Задача о циклоиде

В 1632 году в Париж прибыл Жиль Роберваль, чтобы заняться преподаванием в Коллеж де Франс. Мерсенн моментально оценил его выдающийся талант и предложил ему решить несколько задач, на которые сам Мерсенн не смог найти ответа. Среди них была и задача о циклоиде. Так началась совместная работа над решением этой задачи. В 1599 году Галилей определил циклоиду как геометрическое место точек, которое описывает точка окружности при качении этой окружности вдоль некой прямой.

Мерсенн был очарован красотой циклоиды и решил заняться ее изучением. Его интересовали некоторые ее свойства: длина дуги, описываемая площадь и так далее. Чтобы определить площадь под аркой циклоиды, Галилей сконструировал металлическую модель и поместил ее на весы. Так ему удалось найти приближенное значение с высокой точностью, но этого ему показалось мало. Он хотел получить точный ответ.

Математические методы не ограничены несовершенством модели или неточностью весов. Только с их помощью можно достичь истинного совершенства.



* * *

ЗАДАЧА О ТАУТОХРОНЕ И БРАХИСТОХРОНЕ

Допустим, что мы хотим попасть из точки А в точку В наиболее быстрым способом, при этом исключительно под действием силы тяготения. Либо, что аналогично, нужно найти форму кривой, вдоль которой мы будем скатываться, чтобы как можно быстрее попасть из точки А в точку В. Эта кривая получила название брахистохроны (от греческого брахистос — кратчайший и хронос — время). Интуиция подсказывает, что быстрейшим путем из точки А в точку В будет кратчайший путь между ними, то есть прямая. Однако это не так. Кривой скорейшего спуска будет перевернутая арка циклоиды, проходящая через точку А и имеющая минимум в точке В.

В 1696 году Иоганн Бернулли нашел решение этой задачи и предложил ее другим ученым того времени. Независимо друг от друга ее решили Лейбниц, Ньютон, Якоб Бернулли и Лопиталь. В 1659 году Гюйгенс обнаружил, что при свободном падении вдоль арки циклоиды предмет окажется у ее основания в одно и то же время вне зависимости от высоты, с которой началось падение. Следовательно, циклоида также является решением задачи о таутохроне (от греческого тауго — равный и хронос — время).



При свободном падении как из точки А, так и из точки А' предмет достигнет точки В за одно и то же время.

* * *

Мерсенн посвятил изучению циклоиды много лет. Он опубликовал результаты в различных трудах: «Известные вопросы Книги Бытия» (1623), «Синопсис математики» (1626) и «Вопросы теологии, физики, морали и математики» (1634). Как и всегда, в письмах он сообщал полученные результаты и вопросы, на которые ему удалось найти ответы. Торричелли, Ферма, Декарт, Роберваль верно вычислили, что площадь под аркой циклоиды равна утроенной площади порождающего круга циклоиды. Роберваль и Рен определили, что длина арки в восемь раз превышает ее радиус. Какие красивые ответы на столь простые вопросы! И сколько вычислений потребовалось, чтобы найти эти несложные на вид ответы!