Удивительный мир органической химии - страница 24

стр.



Изомеры, в молекулах которых радикалы (в данном случае метальные группы) расположены по одну сторону от двойной связи, называются цисизомерами, а если по разные — трансизомерами (от лат. cis — по эту сторону, trans — через, т. е. по разные стороны) (рис. 16).



Цис-, трансизомеры, имея различное пространственное строение, отличаются физическими, химическими, а иногда даже — физиологическими свойствами.

Как получают этилен? Обычно его выделяют из газов нефтепереработки, а также из газов коксования угля. Но можно получать этилен и в лаборатории. Еще в 1860 г., исследуя взаимодействие йодистого метилена с галогеноотнимающими средствами, А. М. Бутлеров не только получил этилен, но и сделал вывод о том, что в его молекуле должна быть двойная связь! Эта реакция протекала так:



Отщепляя воду от этилового спирта, тоже можно получить этилен. Для этого спирт нагревают с концентрированной серной кислотой:



Если же вместо этилового спирта использовать пропиловый спирт, то получим второй представитель алкенов — пропилен (пропен):



Пропилен во многом напоминает этилен. Он легко вступает в реакции присоединения. При присоединении водорода (в присутствии катализатора) он превращается в пропан, а при воздействии галогенов — в галогенопроизводные:



Галогеноводороды также присоединяются к пропилену. Но в отличие от этилена в этом случае может получиться два продукта.



Посмотрите внимательно на их формулы. Нетрудно заметить, что атомы хлора и водорода по-разному присоединились к углеродным атомам. Эту реакцию еще в XIX в. изучал Владимир Владимирович Марковников (1838-1904).

 Он установил (1869) правило, которое носит его имя: атом водорода в этой реакции присоединяется к углеродному атому, с которым связано больше атомов водорода, а атом галогенак атому углерода, у которого водородных атомов меньше. Следовательно, из двух продуктов наиболее вероятным будет 2-хлорпропан. Как сейчас химики объясняют это правило?

Молекула пропилена, в отличие от молекулы этилена, несимметрична. Поэтому в ней электронная плотность распределена неравномерно. Дело в том, что электронная плотность в молекуле смещена от метильной группы в сторону двойной связи:



Направление распределения электронов показано стрелками. На крайнем углеродном атоме, который связан двойной связью, образуется небольшой (частичный) отрицательный заряд, обозначаемый δ>- (дельта минус). На втором же атоме углерода создается недостаток электронов (возникает частичный положительный заряд δ>+). Теперь нетрудно догадаться, что положительно заряженный атом водорода (протон) свяжется с крайним углеродным атомом (он несет избыток электронной плотности), а атом галогена устремится туда, где атом углерода имеет частичный положительный заряд.

Этиленовые углеводороды обладают еще одним интересным свойством. Они вступают в реакцию полимеризации, в результате которой образуется полимерный продукт. Например, при полимеризации этилена химики синтезируют замечательный продукт — полиэтилен:



О таких реакциях мы поговорим позже, когда познакомимся с высокомолекулярными соединениями.

Этиленовые углеводороды горят с выделением энергии. Вот как можно записать реакцию горения этилена:



С воздухом этилен, как и метан, образует взрывоопасные смеси.

В заключение скажем, что этилен и его гомологи — источники большого числа разнообразных органических соединений. Например, этилен используют для получения полиэтилена, этилового спирта, галогенопроизводных, оксида этилена и многих других ценных продуктов.

3.3. Всем известный ацетилен

Углеродные атомы могут соединяться между собой не только с помощью двойной связи, но и тройной. Самым простым углеводородом, содержащим тройную связь, является известный многим газ — ацетилен. Этот газ бесцветен, не имеет запаха. Однако при его получении из карбида кальция (а именно так получают ацетилен в технике) образуются газообразные примеси (РН>3, H>2S, NH>3), которые придают ацетилену типичный «карбидный запах». Наверное, многие его ощущали в тех местах, где занимаются сваркой или резкой металлов. Ацетилен при горении в кислороде создает высокотемпературное пламя (свыше 3000 °С). Это и используют в технике. Кстати, ацетилен для автогенной сварки начали использовать еще в 1906 г. в США. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах.