Усилители и радиоузлы - страница 7

стр.



Рис. 4.График изменения звукового давления как бы повторяет график колебаний струны. Запаздывание звука зависит от расстояния до звучащего тела (струна) и может быть подсчитано, исходя из того, что скорость звука в воздухе при 0° примерно равна 330 м/сек.


Мы вводим такой прибор, конечно, условно: для нас это как бы мысленный эксперимент. Но такие измерения все же можно сделать с помощью электронных приборов.

Отрегулируем манометр так, чтобы он показывал лишь отклонение давления воздуха от обычной величины. Это значит, что при нормальном атмосферном давлении прибор покажет нуль. Под действием звуковых волн стрелка манометра будет отклоняться то в одну, то в другую сторону, показывая то сжатие (+), то разрежение (—). График изменения звукового давления (часто его называют графиком звуковых колебаний) в точности повторяет график изменения скорости струны. Здесь, правда, нужно сделать оговорку. Все графики, приведенные на рис. 1 (отклонения, скорости, энергии), очень похожи, и поэтому график звука можно зачислить в «родственники» к любому из них. И все же мы будем считать, что звуковое давление следует за изменением скорости: чем быстрее движется струна, тем большее давление она создает.

Сравнивая графики колебаний струны и звуковых колебаний, сразу же введем уже знакомые нам основные характеристики, или, как принято говорить, параметры звука: период, частоту, фазу, мгновенное значение и амплитуду. Разумеется, все эти параметры теперь относятся к звуковым колебаниям, то есть к изменению давления воздуха. Что касается периода, частоты и фазы, то с этими параметрами дело обстоит довольно просто — они, как и прежде, измеряются в секундах, герцах, градусах. А вот амплитуда и мгновенные значения должны быть выражены в единицах давления.

Как известно, давление говорит о той силе, которая действует на определенную поверхность. Поэтому единица давления представляет собой единицу силы, или, что то же самое, единицу веса, отнесенную к единице площади. В новой международной системе единиц СИ давление измеряют в ньютонах на квадратный метр, или, сокращенно, н/м>2. Ньютон (н) в системе СИ — это величина силы (веса), которая примерно равна 92 г. Таким образом, если на стандартный лист фанеры площадью около 2 м>2 мы выльем стакан воды (вес около 200 г) и равномерно распределим эту воду по листу, то каждый его участок будет испытывать давление около 1 н/м>2.

Единицей звукового давления н/м>2 стали широко пользоваться сравнительно недавно, и в литературе прежних лет вы встретите другую единицу — бар (дин/см>2), который в 10 раз меньше 1 н/м>2, то есть 1 н/м>2 = 10 бар; 1 бар = 0,1 н/м>2.

Если вы захотите сказать, насколько сильный звук действует в какой-либо точке пространства, то наверняка назовете величину звукового давления в этой точке. Но какую величину надо назвать? Мгновенное значение ни о чем не скажет, так как оно непрерывно меняется. Называть амплитуду тоже не совсем правильно — ведь амплитудное давление бывает сравнительно редко, всего два раза за период, а все остальное время звуковое давление значительно меньше.

Когда говорят о звуковом давлении, то обычно имеют в виду его так называемую эффективную величину. Она учитывает тот эффект, который производит звуковая волна в среднем за весь период, и поэтому эффективная величина всегда меньше амплитуды. Так, в частности, для звуковых колебаний, график которых показан на рис. 4, эффективное звуковое давление меньше амплитудного на 30 %. В дальнейшем, когда мы будем говорить о звуковом давлении, то всегда будем иметь в виду эффективное, или действующее, значение.

Если поместить на пути звуковой волны легкую пластинку, например листок бумаги, то волна заставит эту пластинку двигаться, совершать колебания. Как мы увидим дальше, такие вынужденные колебания тонких пластинок-мембран лежат в основе работы многих музыкальных инструментов, микрофонов, человеческого уха.

О способности звуковой волны выполнять работу, например раскачивать листок бумаги, можно судить по звуковому давлению. Однако чаще работоспособность волны характеризуют так называемой интенсивностью или силой звука. Величина эта показывает, какая звуковая мощность приходится на единицу поверхности, на которую падает волна звука.