В лабиринте чисел - страница 12

стр.

— А по-моему, всё так. Просто время мы измеряем не в десятках, а в шестидесятках. Как древние вавилоняне. Да и только ли время? Земной экватор, например, разделён на 360 равных частей, то есть на число кратное шестидесяти. На 360 частей принято делить и земные меридианы, да и любую окружность вообще. Всё это — отголоски шестидесятеричной системы счисления. Следы её встретятся тебе и в геометрии, и в астрономии… Не такая уж она, выходит, бесполезная, как думают некоторые. — Ари выразительно посмотрела на Чита. — Иной раз и без неё не проживёшь.


Жребий

На этот раз они очутились на шумной площади с множеством пёстрых, нарядных павильонов. Громадные, ярко размалёванные плакаты приглашали зрителей на всевозможные представления — одно интереснее другого! Дрессированные дроби. Балет арифметических знаков. Римские цифры на проволоке. Смертельно опасный прыжок в бесконечность. Всемирно известные силовые акробаты Числитель и Знаменатель. Натуральные числа на мотоциклах. И ещё, и ещё… Наверное, не меньше ста!



— Что хочешь посмотреть? — гостеприимно поинтересовалась Ари.

— Всё! — сказал Чит, жадно сверкая глазами.

— Э, нет, на всё времени не хватит. Выбирай что-нибудь одно.

Чит подумал и выбрал балет, и Ари сказала, что теперь всё в порядке — только бы вытянуть нужный билетик! Чит хотел возразить, что билеты покупают, а если тянут, так жребий. Но Ари уже подвела его к длинному павильону с вывеской «Билеты по случаю». В павильоне было много полукруглых окошечек, помеченных разными номерами. В каждом окошечке — ящик, в каждом ящике — свёрнутые в трубочки бумажки. Ари выбрала окошко под номером 100.

— В этой кассе билеты на все сто представлений, по одному билету на каждое, — объяснила она. — Вытянешь, что задумал, — пойдёшь на балет. Вытянешь не то — пеняй на случай.

Чит растерялся: где уверенность, что ему повезёт? Ари подтвердила, что уверенности действительно нет. Зато вероятность имеется. Правда, очень небольшая. Всего-навсего в одну сотую.

— Как, — удивился он, — вероятность тоже можно измерить?

— Как видишь. В кассе 100 разных способов повеселиться. Тебя интересует один. Стало быть, у тебя одна возможность из ста попасть туда, куда ты хочешь. Короче говоря, вероятность удачи равна >1/>100.

Чит долго молчал, а потом спросил: нет ли кассы с большей вероятностью? Ари улыбнулась и повела его к окошечку под номером 10, где было всего десять билетов: по одному на каждое представление, в том числе на балет.

Чит сразу сообразил, что хотя количество билетов вдесятеро уменьшилось, зато вероятность удачи во столько же раз возросла. Теперь она уже равнялась не одной сотой, а одной десятой. Но тянуть жребий он всё-таки не стал и побежал к окошку под номером 5. Бедняга! Он-то думал, что здесь вероятность удачи равна одной пятой. Но Ари вовремя предупредила его, что среди пяти билетиков нет ни одного на балет, и потому вероятность удачи вовсе не >1/>5, а 0. Чит сказал, что это уж скорее невероятность. Он чуть не плакал от досады, и Ари поскорее повела его к ящику, где лежало всего-навсего два билета — один из них заведомо на балет. Вероятность удачи, таким образом, была уже очень велика: >1/>2! Но Читу, как видно, сильно хотелось на балет, потому что испытывать судьбу он и на этот раз не решился.

— Трусишка! Подавай тебе самую большую вероятность… Хорошо ещё, что она у меня в кармане, — засмеялась Ари и протянула ему бумажку со штампом «балет».

— Да здравствует вероятность, равная единице! — заорал Чит и тут же полюбопытствовал: — Ты эту игру специально для меня придумала?



Но оказалось, никакая это не игра, а наука — теория вероятностей. Весьма важная наука: о случайностях, о роли их в человеческой жизни, о законах, по которым они возникают. Над тайнами этих законов люди задумывались давно, потому что очень хотели научиться если не управлять случайными событиями, то хотя бы предугадывать их. Когда вероятны следующее землетрясение, наводнение, неурожай, эпидемия опасной болезни? Ведь, зная это заранее, можно подготовиться к беде, как-то защититься от неё… Попытки определять такие вероятности предпринимались, ещё в Древнем Риме и в Древнем Китае. Но наукой — настоящей, точной наукой — теория вероятностей стала только тогда, когда на помощь ей пришла математика.