В лабиринте чисел - страница 7
Но Ари сказала, что пятиконечная звезда известна людям с глубокой древности. Фигуру эту часто изображали древние вавилоняне. В Древней Греции её избрали своей эмблемой пифагорейцы — последователи знаменитого Пифагора. А Пифагор хорошо знал вавилонскую математику и позаимствовал из неё немало любопытного. В том числе, может быть, и этот звёздчатый пятиугольник.
— А что в нём любопытного? — заинтересовался Чит.
— Гармоническое сочетание частей. Недаром в древности пятиконечная звезда была символом здоровья, а здоровье — тоже гармония: пропорциональное сложение, согласованная работа всех органов. Вот и в звёздчатом пятиугольнике древние подметили замечательную пропорцию, соотношение частей, которое назвали золотым сечением. Чтобы вычертить пятиугольную звезду, надо построить пятиугольник с одинаковыми сторонами и соединить его вершины — иными словами, провести диагонали. Из этих-то диагоналей и образуется звезда. Как видишь, — сказала Ари, указывая на фронтон, — каждая диагональ делится здесь другой диагональю на две части: мéньшую и бóльшую. Так вот, короткая часть во столько раз меньше длинной, во сколько длинная меньше всей диагонали в целом. Но самое интересное, что подобное соотношение частей постоянно встречается в природе. Его можно обнаружить всюду. В строении человека, животных, растений…
— Так, может быть, древние вовсе не изобрели золотого сечения, а просто подсмотрели его у природы? — предположил Чит.
— Вполне вероятно. Сперва подсмотрели, а потом стали пользоваться своим открытием, когда хотели создать что-либо совершенное, гармоничное. Впрочем, золотое сечение — оно используется главным образом в изобразительном искусстве и архитектуре — всего лишь одно из проявлений гармонии. А вообще-то гармония — понятие широкое. Есть гармония в стихах, в танцах. Есть она и в музыке, что, кстати сказать, убедительно показал Пифагор в своём труде о гармонии.
— Не понимаю, — задумался Чит. — Ты говорила, Пифагор — математик?
— Ну и что же! Пифагорейцы, надо тебе знать, изучали четыре науки: арифметику, геометрию, астрономию и музыку.
— Какая же музыка наука? — фыркнул Чит. — Она же искусство.
— Искусство, основанное на числах, — возразила Ари. — Пифагорейцы придавали числам особое значение. Они поклонялись им как божеству. Числа, по их мнению, управляют мировым порядком. На числах основана гармония Вселенной… Ну, тут они, пожалуй, хватили через край. И всё-таки пифагорейцы были настоящими учёными. Они успешно продолжили и развили то, что почерпнули у вавилонян, и сами открыли немало нового в области чисел. О числах, которыми занимались пифагорейцы, можно говорить долго. Но я познакомлю тебя только с несколькими — хотя бы с этими четырьмя: 1, 2, 3, 4. Пифагор относился к ним с особой нежностью: ведь с их помощью он заставил одну-единственную музыкальную струну издавать звуки самой разной высоты.
— И как же он этого добился?
— Использовал отношения своих любимых чисел.
Чит не удержался — хихикнул. Он думал, отношения бывают только у людей. Но Ари сказала, что у чисел тоже, хотя и совсем другие.
Чтобы получать звуки разной высоты, Пифагор стал прижимать струну пальцем в определённом месте, то есть делить её в определённых числовых отношениях: сперва в отношении одного к двум (1 : 2), потом двух к трём (2 : 3), затем трёх к четырём (3 : 4). Как он делил струну дальше, не суть важно. Главное, что вместо целой струны у него всякий раз звучала лишь какая-то часть её. Так с помощью чисел Пифагор заложил основу науки о музыкальных созвучиях, которая тоже, между прочим, называется гармонией.
— Знаешь, Ари, всё это очень интересно… — замялся Чит. — И про Пифагора и про гармонию. Но я должен открыть тебе один секрет. Только не смейся, пожалуйста… Понимаешь, я ещё не умею делить меньшее число на большее. Два на три, три на четыре.
— Бедный ребёнок! Ты что, никогда не ел апельсинов?
Чит совсем растерялся. Апельсины он, конечно, ел, и даже больше, чем следовало. Но что общего между апельсинами и делением? Ари, однако, сказала, что это он поймёт на следующей остановке: