Вблизи абсолютного нуля - страница 27
При обычных взрывах, скажем, пороха или динамита, выделяется мгновенно тепловая энергия. Она хранилась до этих пор внутри молекул. И запас этой скрытой энергии в момент взрыва стремительно вырывается наружу.
Гораздо больший запас энергии хранится внутри атомов. Но зато до него и труднее добраться. Лишь двадцать лет назад ученые добились этого. Человек начал осваивать энергию атомных ядер — атомную энергию. Сначала она появилась тоже при взрыве — атомном взрыве.
Атом напоминает нашу солнечную систему. Внутри — солнце, а вокруг него вращаются планеты. В атоме подобием солнца служит ядро. Это и есть самая сокровенная кладовая природы. Здесь скрываются бессчетные запасы энергии. Надо только уметь ее оттуда изъять. Первыми «раскошелились» ядра тяжелого темного металла урана. Ученые нашли способ освобождать энергию ядер урана. Происходит это в атомном котле. Кроме «топлива» — длинных урановых стержней урана, в таком котле есть одна весьма существенная часть — замедлитель.
Жители японских городов Хиросимы и Нагасаки хорошо запомнили августовские дни 1945 года. Они узнали, что получается, когда атомная энергия вырывается наружу мгновенным взрывом. Но человеку не нужна атомная бомба. Надо обуздать взрыв, чтобы атомная энергия выделялась постепенно, определенными порциями. Вот, например, электрическая энергия непрерывно вырабатывается электростанцией. И по проводам ее доставляют всюду. Работают станки, идут электропоезда, горят лампочки в квартирах, экраны кинотеатров. И все это благодаря тому, что электростанции исправно поставляют городу электричество. Вот таким способом надо поступать и с энергией атома.
Надо заставить атомы урана выделять ее не спеша. Эту работу выполняет замедлитель. Он успокаивает, замедляет реакцию. И вместо мгновенного взрыва атомы урана работают долго и равномерно.
Одним из лучших замедлителей является тяжелая вода.
Вот наконец-то мы добрались до дела.
Тяжелая вода нужна атомным реакторам. А их становится все больше и больше. Казалось бы, легче всего получать тяжелую воду из обычной воды. Выделить каким-нибудь образом эти 0,02 процента. Раньше так и поступали. И вдруг совсем недавно ученые доказали, что гораздо выгоднее окольный путь. Сначала из воды с помощью электричества получают водород. Разумеется, в этом случае водород появится на свет вместе со своим двойником — изотопом дейтерием. Химически они неразлучны, как настоящие двойники. Затем водород надо превратить в жидкость и тогда развести «близнецов» в разные стороны: дейтерию предложить для реакции атомы кислорода, чтобы он превратился в тяжелую воду, а водород отпустить на волю или передать химикам.
Так в атомную технику пришли температуры, лишь на двадцать градусов отличающиеся от абсолютного нуля. Сейчас к ним уже привыкли.
Газы удобно разделять в жидком виде из-за того, что они кипят при различных температурах. Азоту надо — 195,8 °C, а для кислорода хватит —183 °C.
Дейтерий и легкий водород ведут себя точно так же. Но точки кипения азота и кислорода различаются на целых двенадцать градусов. А для дейтерия и легкого водорода разница всего около трех градусов. Но и это уже хорошо. Ведь обычно изотопы почти не отличаются друг от друга. Поэтому и разделять их чрезвычайно трудно.
Значит, для разделения изотопов водорода нужно построить такие же разделительные колонны, заставить водород путешествовать по тарелкам, как это проделывают с жидким воздухом. Но сначала придется добывать обычный водород. Это ведь не воздух, который окружает нас. Поэтому первая ступень «дейтериевого» завода — электролизная ванна. Электрический ток разлагает воду. Затем водород очищают. Вымораживают воду, углекислый газ, кислород, азот, Особенно опасен кислород. Если в машину для сжатия водорода попадает хоть немного кислорода, ожидай взрыва. Дальше начинается знакомая нам работа. Жидкая смесь легкого и тяжелого водорода понемногу переходит с одной тарелки на другую, тянется в низ колонны. Навстречу — струя газа. Жидкость по дороге приобретает все больше и больше дейтерия, а газ, поднимающийся наверх, становится более чистым водородом. Полностью отделить изотопы с одного раза не удается.