Вероятность как форма научного мышления - страница 34
Более объективный метод интерполяции связан с обращением к вероятности (можно указать на способ доверительных интервалов). И в этом месте Фройденталь специально подчеркивает, что переход к вероятности не снимает момента выбора, предположения, в силу чего измерение функций оставляет нас в классе величин, которые он назвал предположительностями. С классом предположительности мы имеем дело и при расчете пределов или сумм бесконечных рядов. Разница с измерением функций лишь та, что здесь используется прием экстраполяции. Скажем, переход к пределу осуществляется посредством фиксации конечного ряда, что позволяет получить приближенное значение предела (т.е. «аппроксимировать» его), опираясь, например, на известное значение арифметического среднего наблюдаемого конечного ряда. При этом исходят из предположения, что дальнейшее наблюдение не приведет к слишком большой ошибке.
Эмпирическая вероятность (т.е. та вероятность, которая выступает в роли измеримой величины) также является пределом, именно пределом относительных частот событий. Следовательно, к ее измерению приложимы те же проблемы, что и к другим предположительностям. Отсюда и тезис автора о типичности понятия вероятности для современной математики.[51]
Фройденталь пишет, что могут возразить, подчеркивая все-таки огромную специфику применения вероятностей, будто собственно обращение к вероятностям для измерения возможной ошибки ведет к порочному кругу. И в этом, де, причина обособленного положения вероятности в применении математики к экспериментальным наукам. Однако в общем случае теория всегда используется для решения проблемы применения данной теории. Т.е. Эксперимент, который должен служить для оправдания применимости теории к некоторой области, неявно всегда использует положения самой теории, как будто она уже заранее применима в данном случае. Так, оправданием применения теории вероятностей (само применение, приложение требует указания способа выявления, определения вероятностей в некоторой области реальности) служит сама вероятность. Дело идет о том, что ограничение ошибки в значении вероятности достижимо лишь вероятностным образом. Пример подобного круга, по словам Фройденталя, имеется и в других областях, скажем, в сфере выявления ошибки электрических экспериментов с помощью электрической теории измерения.
Вместе с тем Фройденталь выдвигал тезис: если вести речь о различии между количествами и предположительностями, то надо принимать во внимание более глубокие основания. Отмечается, что измерение количеств есть не что иное, как выбор внутри конечного ряда возможных значений (т.е. является заданием качественной определенной области возможностей.[52]. С математической точки зрения этот факт выразим в понятии компактного пространства. Последнее получает свое определение, если для каждого положительного «ε» существует конечная система рядов (интервалов), каждый из которых меньше «ε» и которые все вместе охватывают все пространство. Согласно этому определению точкой такого пространства является количество.
Уточнение положения точки в этом пространстве (т.е. собственно количества) достижимо путем увеличения числа конечных интервалов внутри «ε». Ясно, что предположительность не является точкой компактного пространства, что и показывал Фройденталь. [53]
Переход к конечности в области предположительной осуществим, если более или менее искусственным образом сделать компактным пространство, лежащее в основе этого рода величин. Здесь автор справедливо напоминал, что процесс измерения функций и их интерполяции требовал допущения в отношении непрерывности функций. И затем доказывал, что установление (выбор) некоторой произвольной, но фиксируемой константы С, ограничивающей колебания некоторого множества функций у=f(х) в любом интервале <δ величиной меньшей сδ дает компактное пространство функции Rc. Здесь же сохраняются и ограничения для X и Y. Если иметь в виду измерение вероятностей, тогда становится понятным смысл ограничений, зафиксированный так называемыми предельными теоремами. Именно: ограничение разброса вероятностей относительно частот соответствует ограничению вероятностей второго рода [т.е. 0<р<1 и 1>р>0]. Ясно, что здесь применен прием, соответствующий (аналогичный) переходу к компактному пространству функций. Одновременно измерение предположительностей означает компактизацию пространств. [54]