Вокруг Света 2005 № 01 (2772) - страница 8
При низких энергиях взаимодействующих частиц М-теория сводится к так называемой 11-мерной супергравитации. В этой теории есть мембрана и пятьбрана в качестве солитонов (так называют уединенные волны), но нет струн. Струны получаются при сворачивании одного из измерений 11-мерной М-теории. Причем эта теория объясняет в том числе и проблемы темной материи, обнаруженной недавно астрофизиками. Обнаружение одной универсальной квантовой теории очень ободрило физиков, и работа над построением полной квантовой М-теории сейчас идет полным ходом. Теория суперструн является наиболее многообещающим кандидатом на роль квантовой теории всех известных фундаментальных взаимодействий (гравитационного, электромагнитного, сильного и слабого). Эта теория достаточно элегантно решает проблему объединения двух фундаментальных физических теорий XX столетия – квантовой теории и общей теории относительности.
Все частицы в природе делятся на два типа – бозоны и фермионы. Таким образом, любая теория, претендующая на фундаментальность, должна включать в себя оба типа частиц. Когда рассматривают структуру мировых листов струн с учетом наличия бозонов и фермионов, автоматически получают новый тип симметрии – суперсимметрию – симметрию между бозонами и фермионами. Фермионы и бозоны оказываются связанными через эту симметрию, и у каждого из них должен быть суперпартнер из противоположного лагеря. Именно из-за симметрии между бозонами и фермионами появляется приставка «супер» в суперструнах. Согласованная квантовая теория суперструн существует лишь в десятимерии, то есть пространстве-времени с десятью измерениями. Во всех других случаях теория из-за квантовых эффектов становится несогласованной, или «аномальной». В десятимерии же эти эффекты полностью исчезают, компенсируясь симметрией между бозонами и фермионами.
Наше современное представление о Вселенной и ее происхождении зависит не только от фундаментальных законов физики, но и от начальных условий во времена Большого взрыва. Например, движение брошенного мяча определяется законами гравитации. Однако, имея лишь законы гравитации, нельзя предсказать, где упадет мяч. Нужно еще знать начальные условия, то есть величину и направление его скорости в момент броска. Для описания начальных условий, существовавших при рождении Вселенной, используется модель Большого взрыва. В стандартной модели Большого взрыва начальные условия задаются бесконечными значениями энергии, плотности и температуры в момент рождения Вселенной. Иногда пытаются представить этот момент истории как взрыв некоей космической бомбы, порождающей материю в уже существующей Вселенной. Однако этот образ неправильный. Ведь когда взрывается бомба, она взрывается в определенном месте пространства и в определенный момент времени и ее содержимое просто разлетается в разные стороны. Большой взрыв представляет собой порождение самого пространства. В момент Большого взрыва не было никакого пространства вне области взрыва. Или, если быть более точным, еще не было нашего пространства, возникавшего как раз в процессе взрыва и инфляционного расширения. (Более подробно с современной инфляционной теорией происхождения Вселенной можно ознакомиться в материале «Мир, рожденный из ничего» – «Вокруг света», февраль, 2004 год.)
Теория струн модифицирует стандартную космологическую модель в трех ключевых пунктах. Во-первых, из теории струн следует, что Вселенная в момент рождения имеет минимально допустимый размер. Во-вторых, из теории струн следует дуальность малых и больших радиусов. В-третьих, число пространственно-временных измерений в теории струн и М-теории больше четырех, поэтому струнная космология описывает эволюцию всех этих измерений. В начальный момент существования Вселенной все ее пространственные измерения равноправны и свернуты в многомерный клубок планковского размера. И только потом, в ходе инфляции и Большого взрыва часть измерений освобождается из оков суперструн и разворачивается в наше огромное 4-мерное пространство-время.