Вокруг Света 2008 № 08 (2815) - страница 4
Этот маневр, называемый «межорбитальным перелетом с высоким апогеем», особенно актуален при запуске геостационарных спутников, которые первоначально выводятся на низкую орбиту с наклонением к экватору, равным широте космодрома, а потом переводятся на геостационарную орбиту (с нулевым наклонением). Использование биэллиптической траектории позволяет заметно сэкономить на топливе.
«Вояджер-2» стартовал раньше «Вояджера-1» и летел медленнее, но благодаря гравитационным маневрам он за 10 лет посетил все планетыгиганты Солнечной системы. Фото: NASA
Гравитационные маневры
Многие межпланетные миссии при современных технических возможностях просто неосуществимы без обращения к экзотическим навигационным приемам. Дело в том, что скорость истечения рабочего тела из химических ракетных двигателей составляет около 3 км/с. При этом по формуле Циолковского каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической системы. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться к Марсу по гомановской траектории, надо набрать около 3,5 км/с, к Юпитеру — 6 км/с, к Плутону — 8—9 км/с. Получается, что полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. Вот почему 700-килограммовые «Вояджеры» (Voyager) запускались к Юпитеру 600-тонной ракетой «Титан» (Titan IIIE). А если ставится цель выйти на орбиту вокруг планеты, то возникает необходимость брать с собой запас топлива для торможения, и стартовая масса возрастает еще больше.
Но баллистики не сдаются — для экономии топлива они приспособили ту самую гравитацию, на преодоление которой при старте уходит значительная часть энергии. Гравитационные, или на профессиональном языке пертурбационные маневры практически не требуют расхода топлива. Все что нужно — это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящим для целей миссии положением. Подлетая к небесному телу, космический аппарат под действием его поля тяготения ускоряется или замедляется.
Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве «гравитационной пращи», не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца . Таким способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный маневр используется для разгона, а при миссиях к внутренним планетам — напротив, для гашения гелиоцентрической скорости.
Впервые идею гравитационного маневра высказали Фридрих Артурович Цандер и Юрий Васильевич Кондратюк еще в 1920—1930-х годах. Официально считается, что впервые подобный маневр выполнила в 1974 году американская станция «Маринер-10» (Mariner 10), которая, пролетев вблизи Венеры, направилась к Меркурию . Впрочем, первенство американцев оспаривают российские историки космонавтики, считающие первым гравитационным маневром облет Луны, который в 1959 году осуществила советская станция «Луна-3», впервые сфотографировавшая обратную сторону нашего естественного спутника.
1. Расходящийся конус траекторий — следствие погрешностей выведения космического аппарата. Фото:
2. Последствия ошибки при гравитационном маневре
Возмущения и коррекции
На картинках траектории межпланетных полетов выглядят очень просто: от Земли станция движется по дуге эллипса, дальний конец которой упирается в планету. Эллиптичность орбиты вокруг Солнца диктуется первым законом Кеплера. Рассчитать ее по силам даже школьнику, но если по ней запустить реальный космический аппарат, он промахнется мимо цели на многие тысячи километров. Дело в том, что на движение аппарата помимо Солнца влияет тяготение обращающихся вокруг него планет. Поэтому точно рассчитать, где окажется аппарат спустя месяцы, а то и годы полета, можно только сложным численным моделированием. Задаются начальное положение и скорость аппарата, определяется, как относительно него расположены планеты и какие силы действуют с их стороны. По ним рассчитывается, где окажется аппарат спустя небольшое время, скажем, спустя час, и как изменится его скорость. Затем цикл вычислений повторяется, и так шаг за шагом просчитывается вся траектория. Скорее всего, она попадет не совсем туда, куда нужно.