Воздушно-реактивные двигатели - страница 14
На рис. 13 показано устройство камеры сгорания турбореактивного двигателя РД-500. Таких камер на двигателе установлено 9; поэтому на диффузоре центробежного компрессора этого двигателя, показанном на рис. 11, можно видеть 9 патрубков, по которым воздух, выходящий из компрессора, подводится к камерам сгорания. Схема работы камеры сгорания показана также на рис. 13. Топливо — керосин — впрыскивается в движущийся с большой скоростью воздушный поток и сгорает в нем. Сгорание топлива в потоке воздуха, движущемся с большой скоростью, связано с очень сложными физическими процессами; о них будет подробнее рассказано ниже, в главе 7. Такое сгорание трудно изучить и трудно добиться, чтобы оно протекало хорошо, а ведь без этого нельзя создать и хорошего турбореактивного двигателя.
Продукты сгорания топлива — горячие газы, имеющие температуру примерно 850—900° С, устремляются из камеры сгорания в газовую турбину. Газовая турбина служит для того, чтобы вращать компрессор, и происходящие в ней процессы противоположны процессам, происходящим в компрессоре. Если в компрессоре воздух сжимается и давление его увеличивается, на что, естественно, приходится затрачивать работу, то в турбине, наоборот, давление воздуха, или, точнее, газов, уменьшается, они расширяются, совершая при этом работу. Если компрессор нужно вращать с помощью какого-нибудь двигателя, то турбина сама развивает мощность и может вращать компрессор. Так и сделано в турбореактивном двигателе — турбина и компрессор связаны в нем прочным стальным валом.
Рис. 13. Устройство камеры сгорания турбореактивного двигателя РД-500 (внизу принципиальная схема работы камеры): 1 — топливная форсунка, 2 — завихритель; 3 — горловина камеры; 4 — колпак; 5 — коническая перегородка; 6 — жаровая труба; 7 — наружный кожух
Что же представляет собой газовая турбина? Нетрудно догадаться, что принципиально по конструкции турбина должна быть похожа на компрессор, так как в этих машинах в сущности протекает один и тот же процесс, но в противоположных направлениях. Поэтому можно представить себе радиальную турбину — по аналогии с центробежным компрессором и осевую турбину — по аналогии с осевым компрессором. Существуют турбины обоих этих типов.
Рис. 14. Сопловой аппарат турбины турбореактивного двигателя РД-500
Радиальная турбина представляет собой такую же крыльчатку, как и крыльчатка центробежного компрессора. Только газы текут в крыльчатке турбины не от центра к периферии, как в компрессоре, а, наоборот, от периферии к центру. Такие турбины применяются редко, обычно на маломощных двигателях небольших размеров.
Рис. 15. Газовая турбина турбореактивного двигателя РД-500
Рис. 16. Радиальный зазор между рабочим колесом и корпусом турбины двигателя РД-500
На большинстве современных турбореактивных двигателей применяются осевые турбины. Как и осевой компрессор, осевая турбина состоит из рабочего вращающегося колеса с закрепленными на нем лопатками и ряда неподвижных лопаток. Но только в компрессоре воздух сначала протекает через рабочее колесо, а затем поступает в неподвижный направляющий аппарат, а в турбине наоборот. Раскаленные газы из камеры сгорания сразу попадают на неподвижные лопатки, которые называются сопловыми лопатками, а весь ряд таких лопаток — сопловым аппаратом (рис. 14). Когда газы текут в сужающихся каналах между сопловыми лопатками (эти каналы называются соплами), то их скорость увеличивается, а давление падает, газы расширяются. Со скоростью в несколько сот метров в секунду газы вытекают из сопел на лопатки вращающегося рабочего колеса турбины (рис. 15). Это колесо установлено в корпусе так, что между лопатками колеса и корпусом остается лишь очень небольшой радиальный зазор (рис. 16), поэтому газы устремляются в каналы между лопатками рабочего колеса. Так как лопатки изогнуты, то при движении газов в криволинейных каналах между лопатками возникает центробежная сила, действующая на них со стороны газов (рис. 17). Под действием этой силы колесо начинает вращаться. Газы вытекают из рабочего колеса со сравнительно небольшой скоростью — всю свою кинетическую энергию они передают рабочему колесу. Поэтому колесо в состоянии развить большую мощность; совершая несколько тысяч и даже несколько десятков тысяч оборотов в минуту, оно приводит во вращение компрессор.