«Вы, конечно, шутите, мистер Фейнман!» - страница 6

стр.

В старших классах у нас была такая «алгебраическая команда», состоявшая из пяти учеников, – мы ездили в другие школы, чтобы участвовать в соревнованиях. Садились рядком на стулья, команда противников усаживалась напротив. Учительница, проводившая соревнования, доставала конверт, на котором значилось «сорок пять секунд». Она вскрывала конверт, выписывала задачу на школьную доску и говорила: «Начали!» – то есть секунд было все же не сорок пять, потому что, пока она писала на доске, уже можно было думать. Так вот, игра выглядела следующим образом: ты получал листок бумаги и мог что-то писать на нем, мог не писать – не суть важно. Важен был только ответ. Если он выглядел как «шесть книг», ты писал «6» и обводил цифру большим кружком. Если стоявшее в кружке было верным, ты побеждал, если нет – проигрывал.

Одно можно было сказать наверняка: обычное, прямое решение задачи – всякие там «Обозначим число красных книг буквой А, число синих буквой Б» и затем скрип, скрип, скрип, пока не доберешься до «шести книг» – было практически невозможным. На это ушло бы секунд пятьдесят, поскольку те, кто определял, какое время следует отвести на решение, всегда немного уменьшали его. Поэтому ты прикидывал: «А нельзя ли увидеть ответ?» Иногда ты видел его сразу, иногда приходилось придумывать новый способ решения и как можно быстрее производить алгебраические выкладки. Отличная была практика, я решал задачи все лучше и лучше и в конце концов возглавил нашу команду. Так я научился быстро считать, и в университете это умение мне пригодилось. Когда нам давали задачу на вычисления, я очень быстро понимал, в каком направлении следует двигаться, и производил вычисления – тоже быстро.

Чем я еще увлекался в старших классах, так это придумыванием задач и теорем. То есть, занимаясь математикой, я старался найти какой-то практический пример, для которого то, чем я занимаюсь, может оказаться полезным. Так я сочинил целый ряд задач о прямоугольных треугольниках. Вместо того чтобы задавать длины двух сторон для нахождения третьей, я задавал разницу их длин. Вот вам типичный пример: стоит флагшток, к верхушке его привязана веревка; если позволить ей просто свисать вниз, длина ее оказывается на три фута больше высоты флагштока; если ее туго натянуть, конец веревки окажется на расстоянии в пять футов от основания флагштока. Какова его высота?

Я разработал кое-какие уравнения для решения подобных задач и в результате заметил некую связь – возможно, это было sin >2 x + cos >2 x = 1, – напомнившую мне о тригонометрии. За несколько лет до того, вероятно одиннадцати-двенадцатилетним, я прочитал взятую в библиотеке книгу по тригонометрии – и думать о ней забыл. Помнил только, что тригонометрия имеет какое-то отношение к связи синусов с косинусами. И я начал, рисуя треугольники, выяснять эти отношения, причем каждое доказывал самостоятельно. Кроме того, я вычислил синусы, косинусы и тангенсы с шагом в пять градусов, – начав с известного мне синуса угла в пять градусов и используя сложение и выведенные мной формулы половинного угла.

Спустя несколько лет, уже изучая тригонометрию в старших классах школы, я просмотрел те записи и обнаружил, что мои примеры нередко отличаются от приведенных в учебнике. Иногда мне не удавалось найти простой способ решения задачи, и я ходил кругами, отыскивая его. Иногда же мой способ оказывался умнее – решение, приведенное в учебнике, было более сложным! В общем, порой верх брал я, а порой – учебник.

Занимаясь. тригонометрией, я невзлюбил символы, которыми обозначаются синус, косинус, тангенс и так далее. На мой взгляд sin f выглядел как «s умножить на i, умножить на п и умножить на f»! И я изобрел другой, похожий на значок корня квадратного – «сигма» с длинным хвостом, под который я и помещал f. Для тангенса использовалась «тау», а для косинуса – подобие «гаммы», правда и оно смахивало на корень квадратный.

Далее, обратный арксинус обозначался той же «сигмой», но зеркально отраженной слева направо, так что сначала шла горизонтальная линия с аргументом под ней, а затем уж сама «сигма».