Я познаю мир. Компьютеры и интернет - страница 34
Самому Фейнману не удалось дожить до осуществления своей мечты. И будущие открытия в этой области оказались связаны с именем другого американца – Эрика Дрекслера.
В 1977 году Эрик был студентом pi мечтал о колонизации далеких миров и планет. Однако к моменту окончания учебы выяснилось, что с полетами 1с звездам придется пока подождать – нет у нас пи соответствующей технологии, ни подходящей техники.
И тогда Эрик решил колонизировать... самого человека. Он предложил сконструировать молекулярные машины – своеобразные искусственные биологические молекулы, работающие в живых клетках.
Микроскопия «на ощупь»
Предлолшть–то предложил, но опять–таки мечта уперлась в технологические проблемы. Впрочем, на сей раз Дрекслеру повезло больше... В 1981 году ученые швейцарского отделения всемирно известной фирмы «ИБМ» изобрели силовой туннельный микроскоп. Благодаря этому новшеству стало возможным манипулирование мельчайшими частицами материи – с помощью силовых полей исследователи получили возможность переносить из одного места в другое даже отдельные атомы.
Главная часть силового туннельного микроскопа
Работает туннельный микроскоп так. Над полупроводниковой или металлической подложкой расположена тончайшая вольфрамовая игла. Нащэяженио порядка 10 вольт создает разность потенциалов между иглой и подложкой, являющимися в данном случае как>1 бы обкладками конденсатора. Причем из–за малости зазора и крошечных размеров кончика иглы напряженность электростатического поля получается весьма солидной – около 108 В/см. Оно, это поле, и является основной действующей силой туннельного микроскопа: точнее, одной из его разновидностей – атомного силового микроскопа.
Работать этот агрегат может в двух режимах. Если мы будем с помощью специальной схемы поддерживать ток и напряжение между иглой и подложкой постоянными, то при сканировании (многократном проведении) иглы над поверхностью ее придется то опускать, то приподнимать, в зависимости от рельефа. Таким образом, игла, подобно патефонной, будет копировать профиль поверхности.
Поскольку любой механический привод весьма груб, перемещениями иглы на субатомные расстояния управляют с помощью пьезоэффекта. Керамическая пьезотрубка при подаче на ее электроды управляющего напряжения меняет свою форму и размеры, что позволяет в зависимости от сигнала перемещать иглу по трем координатам. Насколько велика чувствительность микроманипулятора, можно судить по таким цифрам: при изменении напряжения на 1 вольт игла смещается на величину порядка 2–3 нанометров.
Ведя таким образом иглу над поверхностью рельефа, довольно просто получить серию электрических кривых, которые с высокой степенью точности будут описывать характер поверхности. Воочию ее можно увидеть на экране дисплея, подсоединенного к туннельному микроскопу.
Кроме «микроскопии на ощупь» с помощью аналогичной установки можно формировать саму поверхность. Если игла подведена к поверхности чересчур близко даже по меркам нанотехнологии, то в локальном электрическом поле появляются силы, достаточные для того, чтобы стягивать к игле атомы, подобно тому, как к наэлектризованной стеклянной палочке притягиваются бумажки и соринки. Можно даже оторвать от поверхности одиночный атом, перенести его в другое место, а затем внедрить его тут.
Именно таким образом, например, в 1990 году специалисты фирмы «ИБМ» выложили название своего предприятия всего из 35 атомов ксенона. Но это было не более чем баловство профессионалов, так сказать, первая проба пера.
В дальнейшем нанотехнология перешла к решению проблем более серьезных.
Ассемблея ассемблеров
Большинство предметов, созданных человеком, как известно, имеют в своей структуре триллионы триллионов атомов. И для того чтобы получить из какого–то сырья полезную вещь, надо эти атомы упорядочить.
Конечно, от изготовления первых кремниевых рубил до компьютеров на кремниевых же микрочипах – дистанция огромного размера. Но суть методики всегда была одна – обрабатывая детали, мы отсекаем лишнее, пытаемся навести порядок в кристаллической структуре.
Но действуем мы пока что на макроуровне. Правда, со времен Левши мы продвинулись и в покорении микромира. Современные технологи уже научились обращаться с объектами микрометровых размеров. Те же микрочипы – тому свидетельство. В них работают группы в тысячи атомов, может быть в сотни.