Ядерные реакторы - страница 14
. В этом неустойчивом ядре все еще есть излишки нейтронов. Лишние нейтроны превращаются в протоны, и ядро, три раза испуская электрон, переходит в ядро полония>210, из которого вылетает альфа-частица, и, наконец, образуется вполне устойчивое ядро свинца>206.
Интересно, что получающееся при промежуточных превращениях ядро висмута>210 может распадаться двумя способами: излучая электрон или альфа-частицу. В обоих случаях конечным ядром является ядро свинца>206.
Не следует думать, что все эти процессы протекают очень быстро. В среднем проходит много миллиардов лет, прежде чем из ядра урана>238 получится ядро свинца>206. Отдельные превращения происходят очень быстро, другие требуют тысяч, миллионов и даже миллиардов лет. Например, среднее время «жизни» ядер урана>234 около 380 тысяч лет, тория>234 — 35 дней, а свинца>214 — 38 минут.
Было бы неправильным сравнивать среднее время «жизни» радиоактивного ядра со средним временем жизни, например, человека. Вполне закономерно то, что человек умирает не в юношеском, а в престарелом возрасте, так как изношенный организм старого человека сильнее подвержен различного рода заболеваниям.
Но нельзя говорить об «износе» радиоактивных ядер. Эти ядра «умирают» независимо от внешних обстоятельств. Законы радиоактивных превращений таковы, что с одинаковой вероятностью распадаются как старые, давно образовавшиеся ядра, так и молодые, только что получившиеся из другого радиоактивного ядра.
Новые элементарные частицы. Для того чтобы объяснить плотность и огромную прочность ядра, в 1935 году японский физик Юкава предположил, что ядерные силы вызываются особыми частицами, в 200–300 раз тяжелее электрона. Один из нуклонов испускает эту частицу, другой ее поглощает. Таким образом, частица связана с каждым из нуклонов и обусловливает ядерные силы между ними. Эта на первый взгляд странная теория Юкавы, как мы знаем, позволила объяснить величину ядерных сил и обстоятельство, благодаря которому эти силы действуют на весьма малом расстоянии.
Надо было найти такую частицу. И вот в 1937 году появилось сообщение, что в космических лучах были действительно найдены частицы, обладающие подходящей массой. Но ликование физиков было преждевременным. Вновь открытая частица — мю-мезон очень слабо взаимодействовала с ядрами и поэтому, естественно, не могла играть роли связующего звена между протоном и нейтроном.
Десять долгих лет физики усиленно искали другую частицу. Наконец ее след был обнаружен в эмульсии фотопластинки, облученной космическими лучами высоко в горах. Она оказалась несколько тяжелее своей предшественницы и была названа пи-мезоном. Пи-мезон живет очень недолго — несколько миллиардных долей секунды и затем превращается в знакомый нам мю-мезон, излучая при этом нейтрино. Пи-мезон живет примерно в 100 раз меньше мю-мезона. Вот поэтому физики так долго и не могли обнаружить пи-мезоны. Ведь 99 процентов времени своей жизни они проводят в виде мю-мезонов.
Как мы уже с вами знаем, пи-мезоны и оказались частицами, о существовании которых предполагал Юкава. По-видимому, они и обусловливают ядерные силы, действующие между протонами и нейтронами. Пи- и мю-мезоны могут быть отрицательными и положительными, в зависимости от знака электрического заряда, который всегда равен по величине заряду электрона. Найден был также пи-мезон, не имеющий электрического заряда.
Последние годы оказались для физиков весьма продуктивными. Было найдено больше десятка новых элементарных частиц: ка-мезоны с массой около 1000 электронных масс и гипероны — частицы тяжелее протонов. Большинство этих частиц было найдено в космических лучах. Сейчас, когда ученые обладают весьма мощными ускорителями заряженных частиц, различные мезоны получаются искусственно.
Среди других элементарных частиц антипротон занимает несколько особое место. Дело в том, что история этой частицы начинается не с момента ее открытия, то есть с 1955 года, а значительно раньше.
Еще в 1928 году, когда известный физик Дирак создал уточненную теорию электрона, он с удивлением увидел, что из написанных им на бумаге уравнений вытекают не только свойства самого электрона. Эти уравнения указывали на существование еще и другой частицы, по своим свойствам противоположной электрону. Тут не могло быть математической ошибки, так как это уравнение очень точно предсказывало наблюдаемое в опыте поведение электрона. Но, может быть, Дираку следовало поступить так же, как школьнику, решающему задачу с квадратным уравнением: выбрать решение, имеющее физический смысл, а другое отбросить! Нет, уравнение Дирака говорит об одновременном существовании двух частиц: электрона и какого-то антиэлектрона. Дирак с большим сомнением рассказывал своим коллегам, что по совершенно непонятной ему причине его уравнение для электрона описывает частицу с массой электрона, но имеющую положительный заряд.