Ядерные реакторы - страница 16

стр.

Обсуждается также возможность падения на Землю метеоритов из антивещества и его аннигиляции с земным веществом. Авторы предполагают, что это было в тех случаях, когда осколки метеоритов не удается отыскать, как, например, в случае с Тунгусским метеоритом. Такому предположению сейчас не противоречат никакие факты. Взрыв, который произошел на месте падения Тунгусского метеорита, можно, конечно, рассматривать как ядерный взрыв. Но хорошо известно, что это явление находит себе и другое вполне удовлетворительное объяснение.

Такие рассуждения сейчас, конечно, преждевременны. Возможно, что дальнейшее исследование свойств антипротонов и антинейтронов покажет нам, что устойчивые антивещества не могут существовать.

ГЛАВА 2.

ЯДЕРНЫЙ ЦЕПНОЙ ПРОЦЕСС


Деление урана. Чрезвычайно заманчивым является использование огромной энергии, освобождающейся в ядерных реакциях. Но не так легко практически получить эту энергию. Путем бомбардировки различных веществ заряженными частицами этого сделать нельзя. Атомные ядра составляют ничтожную часть объема вещества, и попасть в ядро значительно трудней, чем стрелку с завязанными глазами направить пулю в центр удаленной мишени. Из миллионов заряженных частиц лишь одна — две произведут ядерную реакцию. Остальные пройдут мимо ядер и потеряют свою скорость при взаимодействии с электронной оболочкой атомов. Даже очень большая энергия, выделяемая в одной ядерной реакции, не может восполнить потерю энергии на ускорение миллиардов заряженных частиц.

Нельзя получить энергию для практических целей и путем бомбардировки веществ нейтронами, так как получение каждого нейтрона связано с большой затратой энергии.

Опыт практического использования химической энергии говорит нам, что ее можно получать только в таких реакциях, которые поддерживают сами себя, — в так называемых цепных процессах. Таким процессом является известная каждому химическая реакция горения. Для того чтобы зажечь костер из сухих веток, не надо нагревать каждую ветку. Можно зажечь некоторые из них, и тепла, выделяемого при их горении, достаточно для того, чтобы разгорелись соседние, а затем и весь костер.

Нужно было найти такие ядерные реакции, которые вызывали бы подобные же реакций в соседних ядрах вещества, то есть получить ядерный цепной процесс.

Недавно был открыт электрический способ окраски различных изделий. Распыление краски производится при ее соприкосновении с электродом высокого напряжения. Жидкие капли краски разрываются электростатическими силами, возникающими благодаря электрическому заряду жидкости. Здесь, очевидно, электростатические силы преодолевают молекулярные силы сцепления, и большая капля краски делится на ряд маленьких.

То же самое может происходить и с положительно заряженным ядром. Например, при попадании в него нейтрона оно нагревается и может не испускать отдельных частиц, а приходить в колебательное движение, как жидкая капля. Этот процесс схематически изображен на рис. 9. Благодаря таким колебаниям шарообразное ядро попеременно принимает либо сплющенную, либо удлиненную форму. Размах подобного колебания может быть настолько велик, что в средней части ядра образуется перетяжка, и оно под действием электростатических сил разрывается на две части.


>Рис. 9. Колебательное движение тяжелого ядра перед делением. Размах колебания может быть настолько сильным, что в средней части ядра образуется перетяжка и оно разорвется на два ядра меньшей массы

Такое расщепление скорее всего возможно у очень тяжелых ядер, так как заряд их довольно большой, а электростатические силы расталкивания растут с зарядом ядра.

Тяжелые ядра обладают меньшей энергией связи, а следовательно, и менее устойчивы. Если такое ядро придет в колебательное движение, то это движение усиливается электростатическим отталкиванием и ядро может разорваться на две части.

Ядерная реакция деления урана была открыта в 1939 году. Было обнаружено, что если нейтрон попадает в ядро урана, то в некоторых случаях это ядро раскалывается, делится на две части, два «осколка» (рис. 10). Из одного ядра урана получаются два радиоактивных ядра более легких элементов. При этом выделяется значительная энергия.