Ядерные реакторы - страница 27
, так как его ядра могут также поглощать нейтроны. При этом деления не происходит, а образуется ядро изотопа урана>236, излучающее гамма-квант:
Новые нейтроны в этой реакции не освобождаются.
В реакторе, где должно происходить восстановление ядерного горючего, все эти потери не должны превышать 0,5 нейтрона из числа нейтронов, получающихся в каждом акте деления, то есть не больше 20 процентов образующихся в реакторе нейтронов. Очевидно, надо найти возможности существенно уменьшить эти потери. В обычном реакторе с замедлителем, использующим природный уран, они составляют примерно 40–50 процентов всего количества нейтронов деления. Утечку нейтронов можно уменьшить, увеличив размеры котла или применив эффективный отражатель. Но в этом случае будет иметь место поглощение нейтронов в ядрах отражателя и увеличатся потери нейтронов в замедлителе, уране и примесях.
Работы ученых, доложенные на Международной конференции по мирному использованию атомной энергии в Женеве в августе 1955 года, показали, что возможны три типа ядерных реакторов с полным восстановлением ядерного горючего.
Первый тип реактора основан на использовании быстрых нейтронов для цепного процесса.
Как уже говорилось, поглощение нейтронов ядрами почти всегда растет с уменьшением скорости нейтронов.
Вы, вероятно, наблюдали, как быстро летящая муха прорывает паутину, расставленную пауком. Муху спасает только ее скорость, ее энергия. Муха, летящая медленно, безнадежно застревает в паутине. Эта аналогия довольно правильно отражает поведение различных нейтронов в веществе. Медленный нейтрон долгое время находится вблизи ядра, в области действия ядерных сил, и поэтому имеется большая вероятность его поглощения: он может быть захвачен ядерными силами даже тогда, когда проходит на некотором расстоянии от ядра. Поглощение же быстрого нейтрона не всегда происходит даже при его столкновении с ядром. Таким образом, если цепной процесс будет идти на более быстрых нейтронах, то тем самым значительно уменьшатся бесполезные потери нейтронов. Поглощение быстрых нейтронов в уране>235, замедлителе и примесях в десятки раз меньше, чем медленных. Но в природном уране цепной процесс на быстрых нейтронах, как мы уже знаем, идти не может. Поэтому в реакторах на быстрых нейтронах, которые предназначены для восстановления ядерного горючего, должен применяться уран с большим содержанием урана>235.
Такой реактор называется размножающим (бридерным), и состоит он обычно из центральной части (ядра реактора) и оболочки (рис. 20).
Цепной процесс происходит в центральной части реактора, которая должна состоять из сплава урана, обогащенного легким изотопом, с каким-либо тяжелым металлом, слабо поглощающим нейтроны. Таким разбавителем может быть свинец или висмут. Объем центральной части должен быть рассчитан так, чтобы при его заполнении вес уранового сплава был немного меньше критического. Регулировка процесса может производиться добавлением небольшого количества сплава, приводящего систему в критическое состояние. В этом состоянии, как уже нам известно, один из нейтронов деления вызывает еще одно деление, то есть коэффициент размножения равен единице.
При работе такого реактора поглощение нейтронов невелико. Значительная часть их выходит из центральной части реактора и поглощается в оболочке, состоящей из урана>238 или тория>232. При достаточно толстой оболочке выход нейтронов из реактора практически отсутствует.+
В оболочке нейтроны поглощаются ядрами урана>238 или тория>232, образуя искусственное ядерное горючее — плутоний>239 или уран>233.
Центральная часть реактора может состоять из чистого урана>235. Однако в этом случае подбор критических условий затруднен. Ничтожное добавление урана может привести к очень быстрому возрастанию коэффициента размножения, и когда он значительно превысит единицу, произойдет атомный взрыв.